Multimodality MRI synchronous construction based deep learning framework for MRI-guided radiotherapy synthetic CT generation

计算机科学 模态(人机交互) 鉴别器 深度学习 发电机(电路理论) 磁共振成像 特征(语言学) 人工智能 编码器 模式识别(心理学) 放射科 医学 功率(物理) 哲学 物理 操作系统 探测器 电信 量子力学 语言学
作者
Xuanru Zhou,Wenwen Cai,Jiajun Cai,Fan Xiao,Mengke Qi,Jiawen Liu,Linghong Zhou,Yongbao Li,Ting Song
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107054-107054 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107054
摘要

Synthesizing computed tomography (CT) images from magnetic resonance imaging (MRI) data can provide the necessary electron density information for accurate dose calculation in the treatment planning of MRI-guided radiation therapy (MRIgRT). Inputting multimodality MRI data can provide sufficient information for accurate CT synthesis: however, obtaining the necessary number of MRI modalities is clinically expensive and time-consuming. In this study, we propose a multimodality MRI synchronous construction based deep learning framework from a single T1-weight (T1) image for MRIgRT synthetic CT (sCT) image generation. The network is mainly based on a generative adversarial network with sequential subtasks of intermediately generating synthetic MRIs and jointly generating the sCT image from the single T1 MRI. It contains a multitask generator and a multibranch discriminator, where the generator consists of a shared encoder and a splitted multibranch decoder. Specific attention modules are designed within the generator for feasible high-dimensional feature representation and fusion. Fifty patients with nasopharyngeal carcinoma who had undergone radiotherapy and had CT and sufficient MRI modalities scanned (5550 image slices for each modality) were used in the experiment. Results showed that our proposed network outperforms state-of-the-art sCT generation methods well with the least MAE, NRMSE, and comparable PSNR and SSIM index measure. Our proposed network exhibits comparable or even superior performance than the multimodality MRI-based generation method although it only takes a single T1 MRI image as input, thereby providing a more effective and economic solution for the laborious and high-cost generation of sCT images in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大个应助hhh采纳,获得10
刚刚
1秒前
xyzs发布了新的文献求助30
2秒前
2秒前
北北北发布了新的文献求助30
3秒前
ZD发布了新的文献求助10
3秒前
Cherish应助Fiveoreo采纳,获得10
3秒前
rqy发布了新的文献求助20
4秒前
vicky发布了新的文献求助30
4秒前
4秒前
隐形曼青应助rjj001022采纳,获得10
5秒前
树池完成签到,获得积分10
6秒前
快乐的紫寒完成签到,获得积分10
6秒前
大个应助cc采纳,获得10
7秒前
7秒前
7秒前
笨笨摇伽发布了新的文献求助100
8秒前
笑点低中心完成签到,获得积分10
10秒前
ailemonmint完成签到 ,获得积分10
10秒前
10秒前
rjj001022完成签到,获得积分20
10秒前
勤恳的夏之完成签到,获得积分10
11秒前
龙飞凤舞完成签到,获得积分10
11秒前
内向映天发布了新的文献求助10
12秒前
13秒前
研究僧完成签到,获得积分10
13秒前
在水一方应助斯文远望采纳,获得10
14秒前
WHG完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
rqy完成签到,获得积分10
15秒前
taster发布了新的文献求助10
15秒前
北北北完成签到,获得积分10
16秒前
chen发布了新的文献求助10
17秒前
打打应助风中凡白采纳,获得10
17秒前
cc发布了新的文献求助10
19秒前
笨笨摇伽完成签到,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783335
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237467
捐赠科研通 3043806
什么是DOI,文献DOI怎么找? 1670653
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759139