An eleven autophagy-related genes-based prognostic signature for endometrial carcinoma

列线图 CDKN2A 医学 比例危险模型 自噬 肿瘤科 基因 内科学 基因签名 子宫内膜癌 生存分析 癌症研究 癌症 基因表达 细胞凋亡 生物 遗传学
作者
Shiyang Li,Junan Pan,Yanyu Zhang,Yan Tang,Xiaobing Zeng,Shihai Wang,Dengxuan Wu,Yuyong Liu,Xu Dawen,Jianjun Lan,Dong Hu
出处
期刊:Journal of the Egyptian National Cancer Institute 卷期号:34 (1)
标识
DOI:10.1186/s43046-022-00135-2
摘要

Abstract Background Endometrial cancer (EC) is a common malignant tumor in women with increasing mortality. The prognosis of EC is highly heterogeneous which needs more effective biomarkers for clinical decision. Here, we reported the effect of autophagy-related genes (ARGs) on the prognosis of EC. Methods The expression data of EC tissues and adjacent non-tumor samples were available from the TCGA dataset and 232 autophagy-related genes were from The Human Autophagy Database. A prognostic ARGs risk model was further constructed by using LASSO-Cox regression, and its prognostic and predictive value were evaluated by nomogram. Further functional analysis was conducted to reveal a significant signaling pathway. Results A total of 45 differentially expressed ARGs were obtained, including 18 upregulated and 27 downregulated genes. Eleven ARGs (BID, CAPN2, CDKN2A, DLC1, GRID2, IFNG, MYC, NRG3, P4HB, PTK6, and TP73) were finally selected to build ARGs risk. This signature could well distinguish between the high- and low-risk patients (survival analysis: P = 1.18E-10; AUC: 0.733 at 1 year, 0.795 at 3 years, and 0.823 at 5 years). Furthermore, a nomogram was plotting to predict the possibility of overall survival and suggested good value for clinical utility. Conclusion We established an eleven-ARG signature, which was probably effective in the prognostic prediction of patients with EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助yusong采纳,获得10
1秒前
维尼完成签到,获得积分10
3秒前
小金毛大人驾到完成签到,获得积分10
4秒前
5秒前
8秒前
搜集达人应助黑月盟月采纳,获得10
9秒前
10秒前
yusong发布了新的文献求助10
13秒前
14秒前
Rachel0105发布了新的文献求助200
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
xlz110完成签到,获得积分10
18秒前
yusong完成签到,获得积分10
18秒前
21秒前
宁静致远QY完成签到,获得积分10
21秒前
隐形曼青应助luo采纳,获得10
22秒前
ni完成签到 ,获得积分10
23秒前
胖虎发布了新的文献求助10
25秒前
羊羊完成签到 ,获得积分10
26秒前
所所应助干净的井采纳,获得10
28秒前
30秒前
30秒前
小马甲应助Hommand_藏山采纳,获得10
31秒前
王者发布了新的文献求助10
34秒前
Nora完成签到,获得积分10
35秒前
36秒前
JamesPei应助坚强热狗采纳,获得10
38秒前
蒋庆完成签到,获得积分10
38秒前
wmm完成签到 ,获得积分10
38秒前
Orange应助恒恒666采纳,获得10
40秒前
量子星尘发布了新的文献求助10
41秒前
41秒前
45秒前
46秒前
46秒前
烟花应助jim采纳,获得10
47秒前
leec完成签到,获得积分10
47秒前
TSWAKS发布了新的文献求助10
48秒前
科研通AI5应助CX330采纳,获得30
49秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865274
求助须知:如何正确求助?哪些是违规求助? 3407492
关于积分的说明 10654840
捐赠科研通 3131584
什么是DOI,文献DOI怎么找? 1727175
邀请新用户注册赠送积分活动 832173
科研通“疑难数据库(出版商)”最低求助积分说明 780188