Hyperspectral estimation of the soluble solid content of intact netted melons decomposed by continuous wavelet transform

偏最小二乘回归 高光谱成像 数学 小波 连续小波变换 均方误差 相关系数 小波变换 随机森林 决定系数 回归 回归分析 统计 模式识别(心理学) 人工智能 离散小波变换 计算机科学
作者
Chao Zhang,Yue Shi,Zhonghui Wei,Ruiqi Wang,Ting Li,Yubin Wang,Xiaoyan Zhao,Xiaohe Gu
出处
期刊:Frontiers in Physics [Frontiers Media SA]
卷期号:10 被引量:6
标识
DOI:10.3389/fphy.2022.1034982
摘要

Netted melons are welcomed for their soft and sweet pulp and strong aroma during the best-tasting period. The best-tasting period was highly correlated with its soluble solid content (SSC). However, the SSC of the intact melon was difficult to determine due to the low relationship between the hardness, color, or appearance of fruit peel and its SSC. Consequently, a rapid, accurate, and non-destructive method to determine the SSC of netted melons was the key to determining the best-tasting period. A hyperspectral model was constructed to estimate the SSC of intact netted melons. The combination of continuous wavelet transform and partial least squares or random forest algorithm was employed to improve the estimation accuracy of the hyperspectral model. Specifically, the hyperspectra of the diffuse reflection and SSC of 261 fruit samples were collected. The sensitivity band was screened based on the correlation analysis and continuous wavelet transform decomposition. The correlation coefficient and RMSE of the random forest regression model decomposed by the continuous wavelet transform were 0.72 and 0.98%, respectively. The decomposition of the continuous wavelet transform improved the correlation coefficient by 5 and 1.178 times at 754 and 880 nm, respectively. The random forest regression model enhanced the determination coefficient by at least 56.5% than the partial least squares regression model, and the continuous wavelet transform decomposition further enhanced the determination coefficient of the random forest regression model by 4.34%. Meanwhile, the RMSE of the random forest regression model was reduced. Therefore, the decomposition of the continuous wavelet transform improved the stability and prediction ability of the random forest regression model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤傲的静脉完成签到 ,获得积分10
3秒前
ccmxigua完成签到,获得积分10
6秒前
9秒前
稳重母鸡完成签到 ,获得积分10
16秒前
CY完成签到,获得积分10
40秒前
77完成签到,获得积分10
41秒前
末末完成签到 ,获得积分10
1分钟前
yellowonion完成签到 ,获得积分10
1分钟前
1分钟前
Hindiii完成签到,获得积分10
1分钟前
YuLu完成签到 ,获得积分10
1分钟前
Alvienan完成签到,获得积分10
1分钟前
青水完成签到 ,获得积分10
1分钟前
isedu完成签到,获得积分0
1分钟前
龙猫爱看书完成签到,获得积分10
1分钟前
1分钟前
Raunio完成签到,获得积分10
2分钟前
2分钟前
雷小牛完成签到 ,获得积分10
2分钟前
倾听阳光完成签到 ,获得积分10
2分钟前
解你所忧完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
lingling完成签到 ,获得积分10
2分钟前
lz应助guoxihan采纳,获得200
2分钟前
2分钟前
聪慧的从雪完成签到 ,获得积分10
2分钟前
sevenhill完成签到 ,获得积分0
2分钟前
眼睛大夜白完成签到 ,获得积分10
2分钟前
SUNNYONE完成签到 ,获得积分10
2分钟前
你我的共同完成签到 ,获得积分10
2分钟前
无与伦比完成签到 ,获得积分10
3分钟前
辛勤的喉完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
千空完成签到 ,获得积分10
3分钟前
loren313完成签到,获得积分0
3分钟前
3分钟前
李爱国应助琉忆采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534621
求助须知:如何正确求助?哪些是违规求助? 4622612
关于积分的说明 14582706
捐赠科研通 4562799
什么是DOI,文献DOI怎么找? 2500407
邀请新用户注册赠送积分活动 1479902
关于科研通互助平台的介绍 1451136