亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A real-time interpretable artificial intelligence model for the cholangioscopic diagnosis of malignant biliary stricture (with videos)

医学 可解释性 人工智能 前瞻性队列研究 稳健性(进化) 机器学习 放射科 计算机科学 外科 生物化学 基因 化学
作者
Xiang Zhang,Dehua Tang,Jindong Zhou,Muhan Ni,Peng Yan,Zhenyu Zhang,Tao Yu,Qiang Zhan,Yonghua Shen,Lin Zhou,Ruhua Zheng,Xiaoping Zou,Bin Zhang,Wu-Jun Li,Lei Wang
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:98 (2): 199-210.e10 被引量:26
标识
DOI:10.1016/j.gie.2023.02.026
摘要

Abstract

Background and aims

It is crucial to accurately determine malignant biliary strictures (MBSs) for early curative treatment. The study aimed to develop a real-time interpretable artificial intelligent (AI) system to predict MBSs under digital single-operator cholangioscopy (DSOC).

Methods

A novel interpretable AI system called MBSDeiT was developed, consisting of two models to identify qualified images and then predict MBS in real time. The overall efficiency of MBSDeiT was validated at the image level on internal, external, prospective testing datasets and subgroups analyses, and at the video level on the prospective datasets, and compared with that of endoscopists. The association between AI predictions and endoscopic features was evaluated to increase the interpretability.

Results

MBSDeiT can first automatically select qualified DSOC images with an AUC of 0.904 and 0.921–0.927 on the internal testing dataset and the external testing datasets, and then identify MBSs with an AUC of 0.971 on the internal testing dataset, an AUC of 0.978–0.999 on the external testing datasets, and an AUC of 0.976 on the prospective testing dataset, respectively. MBSDeiT accurately identified 92.3% MBS in prospective testing videos. Subgroups analyses confirmed the stability and robustness of MBSDeiT. MBSDeiT achieved superior performance to that of expert and novice endoscopists. The AI predictions were significantly associated with four endoscopic features (nodular mass; friability; raised intraductal lesion; and abnormal vessels; P < 0.05) under DSOC, which is consistent with the endoscopists' predictions.

Conclusions

The findings suggest that MBSDeiT could be a promising approach for the accurate diagnosis of MBS under DSOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李桂芳发布了新的文献求助10
1秒前
8秒前
zly完成签到 ,获得积分10
11秒前
lililili发布了新的文献求助10
13秒前
CipherSage应助阿迪采纳,获得10
14秒前
21秒前
vicky完成签到 ,获得积分10
23秒前
redstone完成签到,获得积分10
25秒前
阿迪发布了新的文献求助10
27秒前
研友_VZG7GZ应助xuj1245采纳,获得10
27秒前
qiuyu发布了新的文献求助10
29秒前
酷波er应助SiboN采纳,获得10
30秒前
32秒前
米其林发布了新的文献求助20
32秒前
阿迪完成签到,获得积分20
35秒前
小蛇玩完成签到,获得积分10
35秒前
李桂芳发布了新的文献求助10
42秒前
无语的诗柳完成签到 ,获得积分10
54秒前
科研通AI5应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
田様应助科研通管家采纳,获得10
55秒前
55秒前
称心妙竹应助科研通管家采纳,获得20
55秒前
56秒前
韧战发布了新的文献求助10
1分钟前
顾矜应助LL采纳,获得10
1分钟前
去小岛上流浪完成签到,获得积分10
1分钟前
freya发布了新的文献求助10
1分钟前
yh完成签到,获得积分10
1分钟前
1分钟前
1分钟前
冯承墘完成签到,获得积分10
1分钟前
xuj1245发布了新的文献求助10
1分钟前
vincen91完成签到,获得积分10
1分钟前
LL发布了新的文献求助10
1分钟前
赘婿应助看书采纳,获得10
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
1分钟前
penguin完成签到,获得积分10
1分钟前
小雨点完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198303
求助须知:如何正确求助?哪些是违规求助? 4379340
关于积分的说明 13637951
捐赠科研通 4235367
什么是DOI,文献DOI怎么找? 2323346
邀请新用户注册赠送积分活动 1321439
关于科研通互助平台的介绍 1272342