The exciting potential for ChatGPT in obstetrics and gynecology

医学 误传 聊天机器人 计算机科学 人工智能 数据科学 自然语言处理 计算机安全
作者
Amos Grünebaum,Joseph Chervenak,Susan L. Pollet,Adi Katz,Frank A. Chervenak
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
卷期号:228 (6): 696-705 被引量:168
标识
DOI:10.1016/j.ajog.2023.03.009
摘要

Natural language processing-the branch of artificial intelligence concerned with the interaction between computers and human language-has advanced markedly in recent years with the introduction of sophisticated deep-learning models. Improved performance in natural language processing tasks, such as text and speech processing, have fueled impressive demonstrations of these models' capabilities. Perhaps no demonstration has been more impactful to date than the introduction of the publicly available online chatbot ChatGPT in November 2022 by OpenAI, which is based on a natural language processing model known as a Generative Pretrained Transformer. Through a series of questions posed by the authors about obstetrics and gynecology to ChatGPT as prompts, we evaluated the model's ability to handle clinical-related queries. Its answers demonstrated that in its current form, ChatGPT can be valuable for users who want preliminary information about virtually any topic in the field. Because its educational role is still being defined, we must recognize its limitations. Although answers were generally eloquent, informed, and lacked a significant degree of mistakes or misinformation, we also observed evidence of its weaknesses. A significant drawback is that the data on which the model has been trained are apparently not readily updated. The specific model that was assessed here, seems to not reliably (if at all) source data from after 2021. Users of ChatGPT who expect data to be more up to date need to be aware of this drawback. An inability to cite sources or to truly understand what the user is asking suggests that it has the capability to mislead. Responsible use of models like ChatGPT will be important for ensuring that they work to help but not harm users seeking information on obstetrics and gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq发布了新的文献求助10
刚刚
野猪佩琪发布了新的文献求助10
刚刚
1秒前
Chenhangask发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
natuki发布了新的文献求助10
2秒前
lixin完成签到,获得积分10
3秒前
3秒前
天地一体完成签到,获得积分10
3秒前
呱呱发布了新的文献求助10
3秒前
情怀应助littlepuppy采纳,获得10
3秒前
科研通AI5应助圈圈采纳,获得10
4秒前
wang完成签到,获得积分10
4秒前
wanci应助洞悉采纳,获得10
4秒前
5秒前
lipeng完成签到,获得积分10
5秒前
6秒前
7秒前
Arthur发布了新的文献求助10
7秒前
桐桐应助科研小菜鸟采纳,获得10
7秒前
8秒前
8秒前
ArielXu发布了新的文献求助30
8秒前
陆驳发布了新的文献求助10
9秒前
nnnaaaa完成签到,获得积分10
10秒前
666完成签到,获得积分10
11秒前
Leclerc发布了新的文献求助10
12秒前
12秒前
Jaycee发布了新的文献求助10
12秒前
一颗柚子发布了新的文献求助10
12秒前
野猪佩琪完成签到,获得积分10
12秒前
Chenhangask完成签到,获得积分10
12秒前
酷波er应助haku采纳,获得10
12秒前
12秒前
南北完成签到,获得积分10
13秒前
keyantong完成签到,获得积分10
14秒前
joyce应助嘻嘻中采纳,获得10
15秒前
打工仔完成签到 ,获得积分10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817748
求助须知:如何正确求助?哪些是违规求助? 3360977
关于积分的说明 10410617
捐赠科研通 3079104
什么是DOI,文献DOI怎么找? 1690986
邀请新用户注册赠送积分活动 814289
科研通“疑难数据库(出版商)”最低求助积分说明 768068