HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN

计算机科学 人工智能 模式识别(心理学) 心跳 卷积神经网络 循环神经网络 规范化(社会学) 深度学习 可解释性 特征提取 人工神经网络 计算机安全 社会学 人类学
作者
Md Shofiqul Islam,Khondokar Fida Hasan,Sunjida Sultana,Shahadat Uddin,Píetro Lió,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 271-287 被引量:43
标识
DOI:10.1016/j.neunet.2023.03.004
摘要

In this paper have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification. This solves problems that arise when traditional dilated convolutional neural network (CNN) models disregard the correlation between contexts and gradient dispersion. The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features. As a result of incorporating both local and global feature information and an attention mechanism, the model's performance for prediction is improved.By combining the fusion features with a dilated CNN and a hierarchical attention mechanism, the trained HARDC model showed significantly improved classification results and interpretability of feature extraction on the PhysioNet 2017 challenge dataset. Sequential Z-Score normalization, filtering, denoising, and segmentation are used to prepare the raw data for analysis. CGAN (Conditional Generative Adversarial Network) is then used to generate synthetic signals from the processed data. The experimental results demonstrate that the proposed HARDC model significantly outperforms other existing models, achieving an accuracy of 99.60\%, F1 score of 98.21\%, a precision of 97.66\%, and recall of 99.60\% using MIT-BIH generated ECG. In addition, this approach substantially reduces run time when using dilated CNN compared to normal convolution. Overall, this hybrid model demonstrates an innovative and cost-effective strategy for ECG signal compression and high-performance ECG recognition. Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lisa完成签到,获得积分10
刚刚
xiamovivi完成签到,获得积分10
刚刚
1秒前
1秒前
zhangl完成签到,获得积分10
1秒前
酷酷芷蕾发布了新的文献求助10
2秒前
斯文败类应助5114shatou大王采纳,获得10
3秒前
酷波er应助miaowk采纳,获得10
5秒前
陈艳林完成签到,获得积分10
6秒前
7秒前
楠楠发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
10秒前
10秒前
搜集达人应助suusu采纳,获得10
11秒前
酷波er应助婷婷采纳,获得30
11秒前
JamesPei应助健忘水卉采纳,获得10
11秒前
11秒前
11秒前
火星上的百川完成签到,获得积分10
12秒前
端庄的紫发布了新的文献求助10
12秒前
戈惜完成签到 ,获得积分10
13秒前
逆天子发布了新的文献求助80
14秒前
15秒前
CG2021发布了新的文献求助20
15秒前
15秒前
ma完成签到,获得积分10
16秒前
16秒前
科研通AI5应助tdtk采纳,获得10
16秒前
16秒前
17秒前
18秒前
在水一方应助荆轲刺秦王采纳,获得10
19秒前
希冀完成签到,获得积分20
19秒前
喻白完成签到,获得积分10
19秒前
wang1完成签到 ,获得积分10
20秒前
Latono完成签到,获得积分10
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960