Towards artificial intelligence to multi-omics characterization of tumor heterogeneity in esophageal cancer

组学 遗传异质性 肿瘤异质性 蛋白质组学 表观遗传学 计算生物学 肿瘤异质性 食管癌 癌症 精密医学 生物 基因组学 生物信息学 表型 DNA甲基化 基因组 基因 遗传学 基因表达
作者
Junyu Li,Lin Li,Peimeng You,Yiping Wei,Bin Xu
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:91: 35-49 被引量:31
标识
DOI:10.1016/j.semcancer.2023.02.009
摘要

Esophageal cancer is a unique and complex heterogeneous malignancy, with substantial tumor heterogeneity: at the cellular levels, tumors are composed of tumor and stromal cellular components; at the genetic levels, they comprise genetically distinct tumor clones; at the phenotypic levels, cells in distinct microenvironmental niches acquire diverse phenotypic features. This heterogeneity affects almost every process of esophageal cancer progression from onset to metastases and recurrence, etc. Intertumoral and intratumoral heterogeneity are major obstacles in the treatment of esophageal cancer, but also offer the potential to manipulate the heterogeneity themselves as a new therapeutic strategy. The high-dimensional, multi-faceted characterization of genomics, epigenomics, transcriptomics, proteomics, metabonomics, etc. of esophageal cancer has opened novel horizons for dissecting tumor heterogeneity. Artificial intelligence especially machine learning and deep learning algorithms, are able to make decisive interpretations of data from multi-omics layers. To date, artificial intelligence has emerged as a promising computational tool for analyzing and dissecting esophageal patient-specific multi-omics data. This review provides a comprehensive review of tumor heterogeneity from a multi-omics perspective. Especially, we discuss the novel techniques single-cell sequencing and spatial transcriptomics, which have revolutionized our understanding of the cell compositions of esophageal cancer and allowed us to determine novel cell types. We focus on the latest advances in artificial intelligence in integrating multi-omics data of esophageal cancer. Artificial intelligence-based multi-omics data integration computational tools exert a key role in tumor heterogeneity assessment, which will potentially boost the development of precision oncology in esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明的凡蕾完成签到,获得积分10
1秒前
4秒前
5秒前
ColinWine发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
kk应助幸福大白采纳,获得10
11秒前
QH发布了新的文献求助10
11秒前
12秒前
小易不易完成签到,获得积分10
12秒前
我淦完成签到 ,获得积分10
13秒前
苹果熊猫发布了新的文献求助10
13秒前
牛马完成签到 ,获得积分10
13秒前
知栀完成签到 ,获得积分10
14秒前
14秒前
HarryChan应助阿俊1212采纳,获得10
15秒前
ling_lz发布了新的文献求助10
15秒前
托尔斯泰发布了新的文献求助10
16秒前
龙之剑香完成签到,获得积分10
16秒前
WDWK发布了新的文献求助10
17秒前
Lucas应助QH采纳,获得10
18秒前
冷傲以珊完成签到,获得积分10
19秒前
苹果书文完成签到 ,获得积分10
22秒前
24秒前
24秒前
圆圆完成签到 ,获得积分10
25秒前
xxxxyyyy1完成签到 ,获得积分10
26秒前
27秒前
lee完成签到,获得积分10
28秒前
anna521212完成签到 ,获得积分10
28秒前
舍舍舍发布了新的文献求助10
28秒前
小易不易发布了新的文献求助10
28秒前
陌路完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712