Towards artificial intelligence to multi-omics characterization of tumor heterogeneity in esophageal cancer

组学 遗传异质性 肿瘤异质性 蛋白质组学 表观遗传学 计算生物学 肿瘤异质性 食管癌 癌症 精密医学 生物 基因组学 生物信息学 表型 DNA甲基化 基因组 基因 遗传学 基因表达
作者
Junyu Li,Lin Li,Peimeng You,Yiping Wei,Bin Xu
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:91: 35-49 被引量:39
标识
DOI:10.1016/j.semcancer.2023.02.009
摘要

Esophageal cancer is a unique and complex heterogeneous malignancy, with substantial tumor heterogeneity: at the cellular levels, tumors are composed of tumor and stromal cellular components; at the genetic levels, they comprise genetically distinct tumor clones; at the phenotypic levels, cells in distinct microenvironmental niches acquire diverse phenotypic features. This heterogeneity affects almost every process of esophageal cancer progression from onset to metastases and recurrence, etc. Intertumoral and intratumoral heterogeneity are major obstacles in the treatment of esophageal cancer, but also offer the potential to manipulate the heterogeneity themselves as a new therapeutic strategy. The high-dimensional, multi-faceted characterization of genomics, epigenomics, transcriptomics, proteomics, metabonomics, etc. of esophageal cancer has opened novel horizons for dissecting tumor heterogeneity. Artificial intelligence especially machine learning and deep learning algorithms, are able to make decisive interpretations of data from multi-omics layers. To date, artificial intelligence has emerged as a promising computational tool for analyzing and dissecting esophageal patient-specific multi-omics data. This review provides a comprehensive review of tumor heterogeneity from a multi-omics perspective. Especially, we discuss the novel techniques single-cell sequencing and spatial transcriptomics, which have revolutionized our understanding of the cell compositions of esophageal cancer and allowed us to determine novel cell types. We focus on the latest advances in artificial intelligence in integrating multi-omics data of esophageal cancer. Artificial intelligence-based multi-omics data integration computational tools exert a key role in tumor heterogeneity assessment, which will potentially boost the development of precision oncology in esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sam0522发布了新的文献求助10
刚刚
酷波er应助小包谷采纳,获得10
刚刚
充电宝应助hebei采纳,获得10
1秒前
sinn17完成签到,获得积分10
1秒前
3秒前
可爱的冷霜完成签到,获得积分10
4秒前
田様应助王文静采纳,获得10
4秒前
5秒前
老魏完成签到,获得积分10
5秒前
脑洞疼应助SuperFAN采纳,获得10
6秒前
___赵完成签到,获得积分10
8秒前
8秒前
9秒前
Miraitowa完成签到 ,获得积分10
9秒前
李爱国应助景笑天采纳,获得10
10秒前
11秒前
13秒前
13秒前
14秒前
Morning发布了新的文献求助10
14秒前
14秒前
Owen应助swallow采纳,获得10
15秒前
15秒前
17秒前
HOLLYWOO发布了新的文献求助10
19秒前
小包谷发布了新的文献求助10
20秒前
20秒前
嘻嘻哈哈应助yty采纳,获得10
21秒前
紫色茄子应助yty采纳,获得10
21秒前
爆米花应助yty采纳,获得10
21秒前
21秒前
21秒前
22秒前
23秒前
AL完成签到,获得积分10
23秒前
fyukgfdyifotrf完成签到,获得积分10
23秒前
小药同学发布了新的文献求助10
24秒前
25秒前
25秒前
汉堡包应助jorjames采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270