MP-Net: An efficient and precise multi-layer pyramid crop classification network for remote sensing images

计算机科学 人工智能 特征(语言学) 人工神经网络 棱锥(几何) 深度学习 特征提取 联营 数据挖掘 模式识别(心理学) 机器学习 遥感 数学 地理 几何学 哲学 语言学
作者
Changhong Xu,Maofang Gao,Jingwen Yan,Yihui Jin,Guijun Yang,Wenbin Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108065-108065 被引量:16
标识
DOI:10.1016/j.compag.2023.108065
摘要

Accurate crop classification map is of great significance in various fields such as the survey of agricultural resource, the analysis of existing circumstance on land application, the yield estimation of crop and the disaster warning. The methods based on machine learning and deep learning are popularly used in crop classification and recognition of remote sensing images. However, the crop classification task based on neural networks still faces significant challenges due to the spatial and temporal distribution of crops and the inherent characteristics of remote sensing images. Therefore, this study proposes the multi-layer pyramid crop classification network (MP-Net) to solve the above problems. To reduce the feature loss during the crop extraction, the proposed model uses the pyramid pooling module to improve the ability of global information acquisition, and the information concatenation module to retain the upper features. Using the GF-6 and Sentinel-2 satellite data, the proposed model was tested in Erhai Lake Basin and Beian City. Compared with other five deep learning models, such as FCN, SegNet, U-Net, PSPNet and DeepLabv3+, the experimental results indicate that the proposed model achieves the highest accuracy in both study areas. Meanwhile, the proposed model has the advantages of short training time and high efficiency under the same running conditions. Overall, this study is beneficial to improve the efficiency and accuracy of crop classification task in the unbalanced temporal and spatial distribution. It also brings a feasible scheme for crop classification tasks in complex growing areas. The code has been publicly available at https://github.com/Xu-Chang-Hong/MP-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo应助DDDD采纳,获得30
刚刚
1秒前
香蕉觅云应助liu1900ab采纳,获得10
1秒前
咚咚糖发布了新的文献求助10
2秒前
zhangscience发布了新的文献求助10
2秒前
2秒前
满意的破茧完成签到,获得积分10
2秒前
ZhouYW应助huangchengzi采纳,获得10
3秒前
薛定谔的猴儿完成签到,获得积分10
3秒前
锣大炮发布了新的文献求助10
4秒前
5秒前
vikoel发布了新的文献求助10
5秒前
Jianan_Yang完成签到,获得积分10
5秒前
大个应助lgwdi采纳,获得10
6秒前
万能图书馆应助nn采纳,获得10
6秒前
想吃肉丸胡辣汤完成签到,获得积分20
7秒前
7秒前
纵马长歌完成签到,获得积分10
7秒前
花鸟风月evereo完成签到,获得积分10
7秒前
BO发布了新的文献求助10
7秒前
HobN0bZ关注了科研通微信公众号
7秒前
缓慢的衫完成签到,获得积分10
7秒前
7秒前
高兴的凝旋完成签到,获得积分10
8秒前
嘟嘟嘟完成签到,获得积分10
10秒前
虚幻中蓝完成签到,获得积分10
10秒前
AN完成签到,获得积分10
10秒前
11秒前
科研菜鸡完成签到 ,获得积分10
11秒前
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
7777发布了新的文献求助10
11秒前
NexusExplorer应助zhangscience采纳,获得10
12秒前
慕青应助Dlwlrma采纳,获得10
12秒前
北极星发布了新的文献求助10
12秒前
领导范儿应助巷子采纳,获得10
13秒前
小巴发布了新的文献求助10
13秒前
ttl完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352218
求助须知:如何正确求助?哪些是违规求助? 4485082
关于积分的说明 13961728
捐赠科研通 4384899
什么是DOI,文献DOI怎么找? 2409213
邀请新用户注册赠送积分活动 1401676
关于科研通互助平台的介绍 1375225