Sparser spiking activity can be better: Feature Refine-and-Mask spiking neural network for event-based visual recognition

尖峰神经网络 计算机科学 事件(粒子物理) 人工智能 特征(语言学) 任务(项目管理) 模式识别(心理学) 人工神经网络 语言学 哲学 物理 管理 量子力学 经济
作者
Man Yao,Hengyu Zhang,Guangshe Zhao,Xiyu Zhang,Dingheng Wang,Gang Cao,Guoqi Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:166: 410-423 被引量:6
标识
DOI:10.1016/j.neunet.2023.07.008
摘要

Event-based visual, a new visual paradigm with bio-inspired dynamic perception and μs level temporal resolution, has prominent advantages in many specific visual scenarios and gained much research interest. Spiking neural network (SNN) is naturally suitable for dealing with event streams due to its temporal information processing capability and event-driven nature. However, existing works SNN neglect the fact that the input event streams are spatially sparse and temporally non-uniform, and just treat these variant inputs equally. This situation interferes with the effectiveness and efficiency of existing SNNs. In this paper, we propose the feature Refine-and-Mask SNN (RM-SNN), which has the ability of self-adaption to regulate the spiking response in a data-dependent way. We use the Refine-and-Mask (RM) module to refine all features and mask the unimportant features to optimize the membrane potential of spiking neurons, which in turn drops the spiking activity. Inspired by the fact that not all events in spatio-temporal streams are task-relevant, we execute the RM module in both temporal and channel dimensions. Extensive experiments on seven event-based benchmarks, DVS128 Gesture, DVS128 Gait, CIFAR10-DVS, N-Caltech101, DailyAction-DVS, UCF101-DVS, and HMDB51-DVS demonstrate that under the multi-scale constraints of input time window, RM-SNN can significantly reduce the network average spiking activity rate while improving the task performance. In addition, by visualizing spiking responses, we analyze why sparser spiking activity can be better. Code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
年轻万声发布了新的文献求助10
4秒前
圈圈儿发布了新的文献求助10
4秒前
4秒前
李琼应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
个性归尘应助科研通管家采纳,获得20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
畅行发布了新的文献求助10
5秒前
ding应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
无情的访冬完成签到 ,获得积分10
9秒前
11秒前
梅子成完成签到,获得积分10
11秒前
11秒前
脑洞疼应助竹子采纳,获得10
13秒前
畅行完成签到,获得积分10
13秒前
范先生发布了新的文献求助30
15秒前
galioo3000发布了新的文献求助10
16秒前
16秒前
ANmin发布了新的文献求助10
20秒前
20秒前
21秒前
朴素海亦发布了新的文献求助10
21秒前
23秒前
香蕉觅云应助别凡采纳,获得10
25秒前
26秒前
yanshapo发布了新的文献求助10
26秒前
科研通AI2S应助mym采纳,获得10
27秒前
慕青应助范先生采纳,获得10
27秒前
LDDD发布了新的文献求助10
28秒前
30秒前
科研通AI5应助xiixix采纳,获得10
31秒前
吃土心完成签到,获得积分10
33秒前
33秒前
34秒前
34秒前
李爱国应助寂寞的菲鹰采纳,获得10
35秒前
35秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839851
求助须知:如何正确求助?哪些是违规求助? 3382113
关于积分的说明 10521335
捐赠科研通 3101547
什么是DOI,文献DOI怎么找? 1708111
邀请新用户注册赠送积分活动 822196
科研通“疑难数据库(出版商)”最低求助积分说明 773208