非视线传播
计算机科学
用户设备
深度学习
人工智能
一般化
基站
工厂(面向对象编程)
钥匙(锁)
频道(广播)
机器学习
实时计算
电信
无线
计算机安全
数学分析
程序设计语言
数学
作者
Baptiste Chatelier,Vincent Corlay,Cristina Ciochina,Fallou Coly,Julien Guillet
标识
DOI:10.1109/eucnc/6gsummit58263.2023.10188249
摘要
User equipment (UE) positioning accuracy is of paramount importance in current and future communications standard. However, traditional methods tend to perform poorly in non line of sight (NLoS) scenarios. As a result, deep learning is a candidate to enhance the UE positioning accuracy in NLoS environments. In this paper, we study the efficiency of deep learning on the 3GPP indoor factory (InF) statistical channel. More specifically, we analyse the impacts of several key elements on the positioning accuracy: the type of radio data used, the number of base stations (BS), the size of the training dataset, and the generalization ability of a trained model.
科研通智能强力驱动
Strongly Powered by AbleSci AI