Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach

肝损伤 药品 肝损伤 毒性 药理学 不利影响 医学 毒理 生物 内科学
作者
Feyza Kelleci̇ Çeli̇k,Gül Karaduman
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4602-4614 被引量:11
标识
DOI:10.1021/acs.jcim.3c00687
摘要

Drug-induced hepatotoxicity, also known as drug-induced liver injury (DILI), is among the possible adverse effects of pharmacotherapy. This clinical condition is accepted as one of the factors leading to patient mortality and morbidity. The LiverTox database was built by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) to predict potential liver damage from medications and take appropriate precautions. The database has classified medicines into seven risk categories (A, B, C, D, E, E*, and X) to avoid medicine-induced liver toxicity. The hepatic damage risk decreases from group A to group E. This study did not include the E* and X classes because they contained unverified and unknown data groups. Our study aims to predict potential liver damage of new drug molecules without using experimental animals. We predict which of the LiverTox risk category drugs with unknown liver toxicity potential will fall into using our one-vs-all quantitative structure-toxicity relationship (OvA-QSTR) model. Our dataset, consisting of 678 organic drug molecules from different pharmacological classes, was collected from LiverTox. The OvA-QSTR models implemented by Bayesian Network (BayesNet) performed well based on the selected descriptors, with the precision-recall curve (PRC) areas ranging from 0.718 to 0.869. Our OvA-QSTR models provide a reliable premarketing risk evaluation of pharmaceutical-induced liver damage potential and offer predictions for different risk levels in DILI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助小刘采纳,获得10
刚刚
1秒前
2秒前
2秒前
小马甲应助碎碎采纳,获得10
2秒前
Yan应助风中音响采纳,获得10
3秒前
xuying158发布了新的文献求助10
3秒前
bkagyin应助金不换采纳,获得10
3秒前
科研通AI5应助张靖采纳,获得10
4秒前
沙子完成签到,获得积分10
4秒前
ZZJ111发布了新的文献求助30
4秒前
5秒前
追剧狂魔完成签到,获得积分10
6秒前
joe覃完成签到,获得积分10
6秒前
猴王完成签到,获得积分10
7秒前
林深时见鹿完成签到,获得积分10
7秒前
Wianiu完成签到,获得积分10
7秒前
贺豪完成签到 ,获得积分10
8秒前
8秒前
WH发布了新的文献求助10
9秒前
9秒前
欧皇发布了新的文献求助10
9秒前
9秒前
Omega完成签到,获得积分10
10秒前
hsx完成签到,获得积分10
10秒前
10秒前
无限太阳发布了新的文献求助10
11秒前
12秒前
灿灿发布了新的文献求助10
12秒前
小刘完成签到,获得积分10
12秒前
小二郎应助小吕采纳,获得10
13秒前
liu完成签到,获得积分10
13秒前
huichuanyin完成签到 ,获得积分10
13秒前
领导范儿应助空白采纳,获得10
13秒前
13秒前
喝汤发布了新的文献求助10
14秒前
Hello应助英勇的半兰采纳,获得10
14秒前
小张不吃想吃完成签到,获得积分10
14秒前
科研通AI6应助跳跃幻竹采纳,获得10
14秒前
qq596完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4756344
求助须知:如何正确求助?哪些是违规求助? 4099412
关于积分的说明 12684230
捐赠科研通 3813598
什么是DOI,文献DOI怎么找? 2105295
邀请新用户注册赠送积分活动 1130038
关于科研通互助平台的介绍 1008100