Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach

肝损伤 药品 肝损伤 毒性 药理学 不利影响 医学 毒理 生物 内科学
作者
Feyza Kelleci̇ Çeli̇k,Gül Karaduman
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4602-4614 被引量:11
标识
DOI:10.1021/acs.jcim.3c00687
摘要

Drug-induced hepatotoxicity, also known as drug-induced liver injury (DILI), is among the possible adverse effects of pharmacotherapy. This clinical condition is accepted as one of the factors leading to patient mortality and morbidity. The LiverTox database was built by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) to predict potential liver damage from medications and take appropriate precautions. The database has classified medicines into seven risk categories (A, B, C, D, E, E*, and X) to avoid medicine-induced liver toxicity. The hepatic damage risk decreases from group A to group E. This study did not include the E* and X classes because they contained unverified and unknown data groups. Our study aims to predict potential liver damage of new drug molecules without using experimental animals. We predict which of the LiverTox risk category drugs with unknown liver toxicity potential will fall into using our one-vs-all quantitative structure-toxicity relationship (OvA-QSTR) model. Our dataset, consisting of 678 organic drug molecules from different pharmacological classes, was collected from LiverTox. The OvA-QSTR models implemented by Bayesian Network (BayesNet) performed well based on the selected descriptors, with the precision-recall curve (PRC) areas ranging from 0.718 to 0.869. Our OvA-QSTR models provide a reliable premarketing risk evaluation of pharmaceutical-induced liver damage potential and offer predictions for different risk levels in DILI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
felix发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
Jasper应助噗噜噜采纳,获得30
1秒前
陈cxz发布了新的文献求助30
1秒前
2秒前
孙晓燕发布了新的文献求助10
2秒前
2秒前
水天发布了新的文献求助10
3秒前
3秒前
3秒前
称心易文完成签到 ,获得积分10
5秒前
103921wjk完成签到,获得积分10
6秒前
唐寻菡发布了新的文献求助30
6秒前
云轩完成签到,获得积分10
8秒前
冰魂应助七人七采纳,获得10
8秒前
8秒前
无语的沛春完成签到,获得积分10
13秒前
萦风发布了新的文献求助10
13秒前
15秒前
聪明凌柏完成签到 ,获得积分10
16秒前
16秒前
17秒前
流光完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
汉堡包应助孙晓燕采纳,获得10
20秒前
流光发布了新的文献求助10
21秒前
21秒前
二甜发布了新的文献求助10
22秒前
莫海尔完成签到,获得积分10
23秒前
wu完成签到,获得积分10
23秒前
Becky完成签到,获得积分10
24秒前
感动城发布了新的文献求助10
24秒前
摇晃的红酒杯应助LC采纳,获得20
25秒前
LL发布了新的文献求助10
25秒前
BAEK完成签到,获得积分20
26秒前
莫海尔发布了新的文献求助10
26秒前
华仔应助Becky采纳,获得10
27秒前
Orange应助唐寻菡采纳,获得10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863180
求助须知:如何正确求助?哪些是违规求助? 3405616
关于积分的说明 10645533
捐赠科研通 3129218
什么是DOI,文献DOI怎么找? 1725658
邀请新用户注册赠送积分活动 831163
科研通“疑难数据库(出版商)”最低求助积分说明 779656