A Real-Time Memory Updating Strategy for Unsupervised Person Re-Identification

计算机科学 聚类分析 质心 人工智能 无监督学习 模式识别(心理学) 离群值 水准点(测量) 特征学习 特征(语言学) 数据挖掘 机器学习 语言学 哲学 大地测量学 地理
作者
Junhui Yin,Xinyu Zhang,Zhanyu Ma,Jun Guo,Yifan Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2309-2321 被引量:22
标识
DOI:10.1109/tip.2023.3266166
摘要

Recently, clustering-based methods have been the dominant solution for unsupervised person re-identification (ReID). Memory-based contrastive learning is widely used for its effectiveness in unsupervised representation learning. However, we find that the inaccurate cluster proxies and the momentum updating strategy do harm to the contrastive learning system. In this paper, we propose a real-time memory updating strategy (RTMem) to update the cluster centroid with a randomly sampled instance feature in the current mini-batch without momentum. Compared to the method that calculates the mean feature vectors as the cluster centroid and updating it with momentum, RTMem enables the features to be up-to-date for each cluster. Based on RTMem, we propose two contrastive losses, i.e., sample-to-instance and sample-to-cluster, to align the relationships between samples to each cluster and to all outliers not belonging to any other clusters. On the one hand, sample-to-instance loss explores the sample relationships of the whole dataset to enhance the capability of density-based clustering algorithm, which relies on similarity measurement for the instance-level images. On the other hand, with pseudo-labels generated by the density-based clustering algorithm, sample-to-cluster loss enforces the sample to be close to its cluster proxy while being far from other proxies. With the simple RTMem contrastive learning strategy, the performance of the corresponding baseline is improved by 9.3% on Market-1501 dataset. Our method consistently outperforms state-of-the-art unsupervised learning person ReID methods on three benchmark datasets. Code is made available at:https://github.com/PRIS-CV/RTMem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有梦不觉人生寒完成签到,获得积分10
1秒前
年轻的馒头完成签到,获得积分10
2秒前
3秒前
6秒前
哈哈完成签到,获得积分10
6秒前
俊逸飞雪完成签到,获得积分10
6秒前
虚幻又莲发布了新的文献求助10
6秒前
6秒前
cdercder应助Yinkris采纳,获得10
8秒前
snow完成签到,获得积分10
10秒前
逆蝶发布了新的文献求助30
12秒前
顽主完成签到,获得积分10
12秒前
tt完成签到 ,获得积分10
12秒前
科研通AI5应助lxr2采纳,获得10
12秒前
阿枫完成签到 ,获得积分10
13秒前
调皮的沛萍完成签到,获得积分10
14秒前
星辰大海应助qiulong采纳,获得10
15秒前
15秒前
16秒前
可爱的函函应助zy采纳,获得10
16秒前
郭宇关注了科研通微信公众号
17秒前
科研通AI2S应助CYY采纳,获得10
17秒前
无限的寄真完成签到 ,获得积分10
17秒前
咖啡先生发布了新的文献求助10
19秒前
ShiRz发布了新的文献求助10
21秒前
领导范儿应助乙醇采纳,获得10
22秒前
辉子完成签到,获得积分10
24秒前
七曜发布了新的文献求助10
26秒前
吃花生酱的猫完成签到,获得积分10
26秒前
科研通AI5应助风趣的绮菱采纳,获得10
26秒前
27秒前
MM发布了新的文献求助10
28秒前
彭于晏应助CJPerformance采纳,获得10
29秒前
30秒前
小二郎应助康康XY采纳,获得10
31秒前
Jasper应助咖啡先生采纳,获得10
31秒前
32秒前
冰魂应助郭宇采纳,获得10
34秒前
wanci应助刘十六采纳,获得10
34秒前
乙醇发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976