Dipole Moments Regulation of Biphosphonic Acid Molecules for Self-assembled Monolayers Boosts the Efficiency of Organic Solar Cells Exceeding 19.7%

化学 偶极子 单层 氧化铟锡 分子 吸附 有机分子 有机太阳能电池 力矩(物理) 图层(电子) 化学物理 纳米技术 有机化学 物理化学 生物化学 物理 经典力学 材料科学 聚合物
作者
Huan Liu,Yufei Xin,Zhaochen Suo,Yang Liu,Yu Zou,Xiangjian Cao,Ziyang Hu,Bin Kan,Xiangjian Wan,Yongsheng Liu,Yongsheng Chen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (20): 14287-14296 被引量:32
标识
DOI:10.1021/jacs.4c03917
摘要

PEDOT:PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frac_er完成签到,获得积分10
1秒前
1秒前
啦啦发布了新的文献求助10
1秒前
王晓完成签到,获得积分10
2秒前
wmm完成签到,获得积分10
3秒前
4秒前
奋斗的大白菜完成签到,获得积分10
4秒前
zhuxd完成签到,获得积分10
5秒前
求知小生完成签到,获得积分10
6秒前
6秒前
佳无夜完成签到,获得积分10
6秒前
rice0601完成签到,获得积分10
7秒前
科目三应助茹茹采纳,获得10
7秒前
此身越重洋完成签到,获得积分10
8秒前
biozy完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
yuan发布了新的文献求助20
9秒前
gh完成签到,获得积分10
10秒前
chhzz完成签到 ,获得积分10
11秒前
wsh完成签到,获得积分10
11秒前
i羽翼深蓝i完成签到,获得积分10
12秒前
NewMoona完成签到 ,获得积分10
12秒前
还单身的雅琴完成签到,获得积分10
12秒前
Flyzhang完成签到,获得积分10
13秒前
YangyangLiu发布了新的文献求助10
13秒前
TangQQ完成签到,获得积分10
13秒前
科研小白发布了新的文献求助10
14秒前
2025顺顺利利完成签到 ,获得积分10
14秒前
一个完成签到,获得积分10
15秒前
15秒前
青云完成签到,获得积分10
16秒前
默默完成签到 ,获得积分10
16秒前
璐璐完成签到 ,获得积分10
17秒前
lcs完成签到,获得积分10
17秒前
华仔应助YZ采纳,获得10
18秒前
圆缘园完成签到,获得积分10
18秒前
sun发布了新的文献求助30
18秒前
XRH完成签到,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301387
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805488
科研通“疑难数据库(出版商)”最低求助积分说明 762626