Incorporating a deep‐learning client outcome prediction tool as feedback in supported internet‐delivered cognitive behavioural therapy for depression and anxiety: A randomised controlled trial within routine clinical practice

焦虑 随机对照试验 萧条(经济学) 互联网 心理学 认知 临床心理学 临床实习 结果(博弈论) 认知行为疗法 认知行为疗法 心理治疗师 医学 精神科 物理疗法 计算机科学 万维网 外科 数学 数理经济学 经济 宏观经济学
作者
Garrett Hisler,Katherine S. Young,Diana Catalina Cumpanasoiu,Jorge Palacios,Daniel Duffy,Ángel Enrique,Dessie Keegan,Derek Richards
出处
期刊:Counselling and Psychotherapy Research [Wiley]
标识
DOI:10.1002/capr.12771
摘要

Abstract Introduction Machine learning techniques have been leveraged to predict client psychological treatment outcomes. Few studies, however, have tested whether providing such model predictions as feedback to therapists improves client outcomes. This randomised controlled trial examined (1) the effects of implementing therapist feedback via a deep‐learning model (DLM) tool that predicts client treatment response (i.e., reliable improvement on the Patient Health Questionnaire‐9 [PHQ‐9] or Generalized Anxiety Disorder‐7 [GAD‐7]) to internet‐delivered cognitive behavioural therapy (iCBT) in routine clinical care and (2) therapist acceptability of this prediction tool. Methods Fifty‐one therapists were randomly assigned to access the DLM tool (vs. treatment as usual [TAU]) and oversaw the care of 2394 clients who completed repeated PHQ‐9 and GAD‐7 assessments. Results Multilevel growth curve models revealed no overall differences between the DLM tool vs. TAU conditions in client clinical outcomes. However, clients of therapists with the DLM tool used more tools, completed more activities and visited more platform pages. In subgroup analyses, clients predicted to be ‘not‐on‐track’ were statistically significantly more likely to have reliable improvement on the PHQ‐9 in the DLM vs. TAU group. Therapists with access to the DLM tool reported that it was acceptable for use, they had positive attitudes towards it, and reported it prompted greater examination and discussion of clients, particularly those predicted not to improve. Conclusion Altogether, the DLM tool was acceptable for therapists, and clients engaged more with the platform, with clinical benefits specific to reliable improvement on the PHQ‐9 for not‐on‐track clients. Future applications and considerations for implementing machine learning predictions as feedback tools within iCBT are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小泉完成签到 ,获得积分10
1秒前
DuWilliam发布了新的文献求助10
1秒前
昏睡的蟠桃应助oguricap采纳,获得200
2秒前
1459完成签到,获得积分10
2秒前
科研通AI5应助Daixi_Chen采纳,获得30
3秒前
4秒前
77最可爱完成签到,获得积分10
4秒前
Jasper应助不想看文献采纳,获得10
5秒前
5秒前
wxyinhefeng完成签到 ,获得积分10
5秒前
fosca完成签到,获得积分10
6秒前
快乐的幻波完成签到,获得积分20
6秒前
艾文完成签到,获得积分10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
故酒应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
诸葛御风应助科研通管家采纳,获得20
9秒前
zjw应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
清脆寄容应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
zjw应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得30
11秒前
大鹏应助科研通管家采纳,获得20
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
艾文发布了新的文献求助30
11秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728