已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning in the diagnosis for cystic lesions of the jaws: a review of recent progress

可解释性 医学物理学 医学 鉴别诊断 判别式 鉴定(生物学) 射线照相术 人工智能 放射科 计算机科学 病理 植物 生物
作者
Yu-Jie Shi,Jupeng Li,Yue Wang,Ruohan Ma,Yanlin Wang,Yong Guo,Gang Li
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:53 (5): 271-280
标识
DOI:10.1093/dmfr/twae022
摘要

Cystic lesions of the gnathic bones present challenges in differential diagnosis. In recent years, artificial intelligence (AI) represented by deep learning (DL) has rapidly developed and emerged in the field of dental and maxillofacial radiology (DMFR). Dental radiography provides a rich resource for the study of diagnostic analysis methods for cystic lesions of the jaws and has attracted many researchers. The aim of the current study was to investigate the diagnostic performance of DL for cystic lesions of the jaws. Online searches were done on Google Scholar, PubMed, and IEEE Xplore databases, up to September 2023, with subsequent manual screening for confirmation. The initial search yielded 1862 titles, and 44 studies were ultimately included. All studies used DL methods or tools for the identification of a variable number of maxillofacial cysts. The performance of algorithms with different models varies. Although most of the reviewed studies demonstrated that DL methods have better discriminative performance than clinicians, further development is still needed before routine clinical implementation due to several challenges and limitations such as lack of model interpretability, multicentre data validation, etc. Considering the current limitations and challenges, future studies for the differential diagnosis of cystic lesions of the jaws should follow actual clinical diagnostic scenarios to coordinate study design and enhance the impact of AI in the diagnosis of oral and maxillofacial diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
江苏小马云完成签到,获得积分10
2秒前
地表飞猪应助clam采纳,获得20
3秒前
Sakura-峰完成签到 ,获得积分10
3秒前
4秒前
傲娇的冬萱完成签到 ,获得积分10
5秒前
5秒前
团结友爱完成签到,获得积分10
6秒前
6秒前
xxx发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助哥叔华采纳,获得10
8秒前
FashionBoy应助糖醋可乐采纳,获得10
10秒前
11秒前
fareless发布了新的文献求助10
11秒前
tiantian0518完成签到 ,获得积分10
12秒前
leonzhou发布了新的文献求助10
12秒前
13秒前
Healer发布了新的文献求助10
13秒前
14秒前
16秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
16秒前
16秒前
fanmo完成签到 ,获得积分0
17秒前
17秒前
张小北发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
XY发布了新的文献求助10
20秒前
三只保全发布了新的文献求助10
21秒前
21秒前
yin关注了科研通微信公众号
22秒前
木木杨发布了新的文献求助10
22秒前
wanzhitao发布了新的文献求助30
23秒前
糖醋可乐发布了新的文献求助10
23秒前
HHHH发布了新的文献求助10
23秒前
咕咕发布了新的文献求助10
24秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436