A Robust Deep-Learning Model to Detect Major Depressive Disorder Utilising EEG Signals

脑电图 重性抑郁障碍 卷积神经网络 人工智能 深度学习 计算机科学 特征(语言学) 机器学习 心理学 模式识别(心理学) 精神科 认知 语言学 哲学
作者
Israq Ahmed Anik,A. H. M. Kamal,Muhammad Ashad Kabir,Shahadat Uddin,Mohammad Ali Moni
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (10): 4938-4947
标识
DOI:10.1109/tai.2024.3394792
摘要

Major Depressive Disorder (MDD), commonly called depression, is a prevalent psychiatric condition diagnosed via questionnaire-based mental status assessments. However, this method often yields inconsistent and inaccurate results. Furthermore, there is currently a lack of a comprehensive diagnostic framework for MDD that assesses various brainwaves (alpha, theta, gamma, etc.) of EEG signals as potential biomarkers, aiming to identify the most effective one for achieving accurate and robust diagnostic outcomes. To address this issue, we propose an innovative approach employing a deep convolutional neural network (DCNN) for MDD diagnosis utilising the brainwaves present in electroencephalogram (EEG) signals. Our proposed model, an extended 11-layer one-dimensional convolutional neural network (Ex-1DCNN), is designed to automatically learn from input EEG signals, foregoing the need for manual feature selection. By harnessing intrinsic brainwave patterns, our model demonstrates adaptability in classifying EEG signals into depressive and healthy categories. We have conducted an extensive analysis to identify optimal brainwave features and epoch duration for accurate MDD diagnosis. Leveraging EEG data from 34 MDD patients and 30 healthy subjects, we have identified that the Gamma brainwave at a 15-second epoch duration is the most effective configuration, achieving an accuracy of 99.60%, sensitivity of 100%, specificity of 99.21%, and an F1-score of 99.60%. This study highlights the potential of deep learning techniques in streamlining the diagnostic process for MDD and offering a reliable aid to clinicians in MDD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一包辣条完成签到,获得积分20
刚刚
852应助智智采纳,获得10
刚刚
HU完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
dracovu发布了新的文献求助10
3秒前
畅跑daily完成签到,获得积分10
4秒前
4秒前
李一发布了新的文献求助10
5秒前
哈哈发布了新的文献求助10
5秒前
文迪厄尔发布了新的文献求助10
5秒前
jj关闭了jj文献求助
5秒前
灵巧汉堡完成签到 ,获得积分10
6秒前
Hu_1111Fan完成签到,获得积分20
6秒前
6秒前
领导范儿应助石土土采纳,获得10
7秒前
小新完成签到,获得积分10
7秒前
shiyi完成签到,获得积分10
10秒前
优雅海雪发布了新的文献求助10
10秒前
22222发布了新的文献求助10
10秒前
chao完成签到,获得积分10
11秒前
dracovu完成签到,获得积分10
11秒前
Maria完成签到 ,获得积分10
11秒前
13秒前
是欧小米完成签到,获得积分10
13秒前
14秒前
Pyc完成签到,获得积分10
14秒前
rrrr发布了新的文献求助10
14秒前
宋芝恬完成签到,获得积分10
15秒前
CipherSage应助chao采纳,获得10
16秒前
17秒前
李大帅发布了新的文献求助20
18秒前
爱笑的宝马给爱笑的宝马的求助进行了留言
19秒前
辛酸长安远啊完成签到,获得积分10
21秒前
michal发布了新的文献求助30
21秒前
21秒前
平常铅笔完成签到,获得积分10
21秒前
jw完成签到,获得积分10
22秒前
石中酒完成签到 ,获得积分10
22秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825290
求助须知:如何正确求助?哪些是违规求助? 3367618
关于积分的说明 10446647
捐赠科研通 3086928
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816756
科研通“疑难数据库(出版商)”最低求助积分说明 769937