Construction and validation of a clinical differentiation model between peripheral lung cancer and solitary pulmonary tuberculosis

逻辑回归 列线图 接收机工作特性 医学 单变量 肺癌 肺结核 人工智能 统计 内科学 机器学习 多元统计 数学 计算机科学 病理
作者
Xukun Gao,Huaqing Tan,Mengdie Zhu,Guojin Zhang,Yuntai Cao
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:193: 107851-107851 被引量:1
标识
DOI:10.1016/j.lungcan.2024.107851
摘要

Objective To establish and validate a clinical model for differentiating peripheral lung cancer (PLC) from solitary pulmonary tuberculosis (SP-TB) based on clinical and imaging features. Materials and methods Retrospectively, 183 patients (100 PLC, 83 SP-TB) in our hospital were randomly divided into a training group and an internal validation group (ratio 7:3), and 100 patients (50 PLC, 50 SP-TB) in Sichuan Provincial People's Hospital were identified as an external validation group. The collected qualitative and quantitative variables were used to determine the independent feature variables for distinguishing between PLC and SP-TB through univariate logistic regression, multivariate logistic regression. Then, traditional logistic regression models and machine learning algorithm models (decision tree, random forest, xgboost, support vector machine, k-nearest neighbors, light gradient boosting machine) were established using the independent feature variables. The model with the highest AUC value in the internal validation group was used for subsequent analysis. The receiver operating characteristic curve (ROC), calibration curve, and decision curves analysis (DCA) were used to assess the model's discrimination, calibration, and clinical usefulness. Result Age, smoking history, maximum diameter of lesion, lobulation, spiculation, calcification, and vascular convergence sign were independent characteristic variables to differentiate PLC from SP-TB. The logistic regression model had the highest AUC value of 0.878 for the internal validation group, based on which a quantitative visualization nomogram was constructed to discriminate the two diseases. The area under the ROC curve (AUC) of the model in the training, internal validation, and external validation groups were 0.915 (95 % CI: 0.866–0.965), 0.878 (95 % CI: 0.784–0.971), and 0.912 (95 % CI: 0.855–0.969), respectively, and the calibration curves fitted well. Decision curves analysis (DCA) confirmed the good clinical benefit of the model. Conclusion The model constructed based on clinical and imaging features can accurately differentiate between PLC and SP-TB, providing potential value for developing reasonable clinical plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟柳画桥完成签到,获得积分10
1秒前
jokerli完成签到,获得积分10
1秒前
glomming完成签到 ,获得积分10
2秒前
青栞完成签到,获得积分10
2秒前
远方的蓝风铃完成签到,获得积分10
2秒前
Oasis发布了新的文献求助10
3秒前
可爱的函函应助研友_8QxN1Z采纳,获得10
3秒前
dogsday完成签到,获得积分10
3秒前
xiuxiu_27发布了新的文献求助10
3秒前
复杂的保温杯完成签到 ,获得积分10
4秒前
呆萌从蓉完成签到 ,获得积分10
4秒前
杂货铺老板娘完成签到,获得积分10
4秒前
qing完成签到,获得积分10
4秒前
勤奋的擎完成签到 ,获得积分10
5秒前
月儿完成签到,获得积分10
5秒前
zwenng完成签到,获得积分10
6秒前
谷雨茶完成签到,获得积分10
6秒前
我是老大应助ZhijunXiang采纳,获得30
6秒前
RebeccaHe完成签到,获得积分10
6秒前
幽默沛山完成签到 ,获得积分10
6秒前
7秒前
小谢完成签到,获得积分10
7秒前
感动的银耳汤完成签到,获得积分10
7秒前
翼静完成签到,获得积分10
7秒前
香蕉花生完成签到 ,获得积分10
8秒前
可爱的函函应助weiweiwu12采纳,获得10
9秒前
helly完成签到,获得积分10
9秒前
朴素的大树完成签到 ,获得积分10
9秒前
baix完成签到,获得积分10
10秒前
谜记完成签到,获得积分10
10秒前
YB完成签到,获得积分10
10秒前
美女发布了新的文献求助10
11秒前
树下小草发布了新的文献求助10
11秒前
11秒前
12秒前
CY03完成签到,获得积分10
12秒前
时刻保持质疑完成签到,获得积分10
12秒前
小小完成签到,获得积分10
12秒前
遮宁完成签到,获得积分10
13秒前
Yiwaa完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609