Enterprise financial sharing and risk identification model combining recurrent neural networks with transformer model supported by blockchain

人工神经网络 鉴定(生物学) 财务建模 循环神经网络 危险和可操作性研究 计算机科学 业务 机器学习 人工智能 财务 生物 软件工程 植物 可操作性
作者
Yang Wu
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (12): e32639-e32639 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e32639
摘要

The objective of this study is to investigate methodologies concerning enterprise financial sharing and risk identification to mitigate concerns associated with the sharing and safeguarding of financial data. Initially, the analysis examines security vulnerabilities inherent in conventional financial information sharing practices. Subsequently, blockchain technology is introduced to transition various entity nodes within centralized enterprise financial networks into a decentralized blockchain framework, culminating in the formulation of a blockchain-based model for enterprise financial data sharing. Concurrently, the study integrates the Bi-directional Long Short-Term Memory (BiLSTM) algorithm with the transformer model, presenting an enterprise financial risk identification model referred to as the BiLSTM-fused transformer model. This model amalgamates multimodal sequence modeling with comprehensive understanding of both textual and visual data. It stratifies financial values into levels 1 to 5, where level 1 signifies the most favorable financial condition, followed by relatively good (level 2), average (level 3), high risk (level 4), and severe risk (level 5). Subsequent to model construction, experimental analysis is conducted, revealing that, in comparison to the Byzantine Fault Tolerance (BFT) algorithm mechanism, the proposed model achieves a throughput exceeding 80 with a node count of 146. Both data message leakage and average packet loss rates remain below 10 %. Moreover, when juxtaposed with the recurrent neural networks (RNNs) algorithm, this model demonstrates a risk identification accuracy surpassing 94 %, an AUC value exceeding 0.95, and a reduction in the time required for risk identification by approximately 10 s. Consequently, this study facilitates the more precise and efficient identification of potential risks, thereby furnishing crucial support for enterprise risk management and strategic decision-making endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助欣喜采纳,获得10
刚刚
深竹月发布了新的文献求助10
刚刚
望北完成签到 ,获得积分10
刚刚
Xu完成签到,获得积分10
1秒前
aslink发布了新的文献求助10
2秒前
4秒前
5秒前
6秒前
7秒前
8秒前
真的在改了完成签到 ,获得积分10
9秒前
LKT发布了新的文献求助10
11秒前
Amyandjohn发布了新的文献求助10
11秒前
weini完成签到 ,获得积分10
12秒前
勤恳的天亦应助lili采纳,获得10
12秒前
Zephyr关注了科研通微信公众号
13秒前
科研通AI5应助锦鲤小然采纳,获得10
13秒前
chen发布了新的文献求助10
13秒前
13秒前
14秒前
执着的松鼠完成签到,获得积分20
14秒前
LKT完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
赘婿应助hif1a采纳,获得10
16秒前
科目三应助Amyandjohn采纳,获得10
18秒前
wjm发布了新的文献求助10
19秒前
芝芝完成签到,获得积分10
19秒前
ROC完成签到 ,获得积分10
21秒前
娜孜完成签到,获得积分20
21秒前
21秒前
zhaop发布了新的文献求助10
21秒前
uuuu完成签到 ,获得积分10
22秒前
23秒前
wjm完成签到,获得积分20
24秒前
24秒前
Hello应助西瓜汽水采纳,获得10
25秒前
25秒前
自觉迎夏发布了新的文献求助10
25秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4977785
求助须知:如何正确求助?哪些是违规求助? 4230998
关于积分的说明 13177929
捐赠科研通 4021586
什么是DOI,文献DOI怎么找? 2200326
邀请新用户注册赠送积分活动 1212841
关于科研通互助平台的介绍 1129083