Real-time monitoring of the column chromatography process of Ginkgo biloba using near-infrared and Raman spectroscopy combined with spectral fusion strategy

银杏 拉曼光谱 银杏 色谱法 化学 融合 红外线的 分析化学(期刊) 植物 生物 光学 语言学 物理 哲学
作者
Sijie Zhang,Sheng Zhang,Xingchu Gong,Haibin Qu
出处
期刊:Process Biochemistry [Elsevier BV]
卷期号:145: 50-62
标识
DOI:10.1016/j.procbio.2024.06.012
摘要

In the column chromatography elution process of traditional Chinese medicine (TCM), the real-time monitoring of active components plays an important role in product quality control. In this study, the column chromatography elution process in preparing of Ginkgo biloba leaf extract was performed in bench scale, where near-infrared (NIR) spectroscopy and Raman spectroscopy were collected to determine the concentration changes of several critical quality attributes. Based on single spectral data and fused spectral data, partial least squares and support vector machine models were established, respectively. The results indicated that for most analytes, models based on Raman spectra were superior to NIR spectral models, and fusion models established by the mid-level data fusion approach were superior to the single spectral models. The coefficients of determination (Rt2) of the optimal Raman and mid-level data fusion models were all higher than 0.96. The concentration profiles predicted by the mid-level data fusion quantitative models were in better agreement with the real trends defined by measured values. This is the first-ever study reporting the real-time monitoring of TCM column chromatography process by Raman spectroscopy combined with NIR spectroscopy, having vital reference values for process monitoring and understanding of the column chromatography for other TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MOON完成签到,获得积分10
1秒前
刘昊政发布了新的文献求助10
2秒前
2秒前
2秒前
Month完成签到,获得积分10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
叶诗柳发布了新的文献求助10
3秒前
Maestro_S发布了新的文献求助10
4秒前
5秒前
Month发布了新的文献求助10
5秒前
9秒前
www发布了新的文献求助10
9秒前
叶诗柳完成签到,获得积分10
9秒前
妮妮发布了新的文献求助10
11秒前
墨尘发布了新的文献求助30
11秒前
12秒前
科目三应助yangican采纳,获得10
13秒前
半糖神仙发布了新的文献求助10
13秒前
15秒前
nowfitness完成签到,获得积分10
16秒前
16秒前
16秒前
乐观寄真发布了新的文献求助10
17秒前
Uni应助iron采纳,获得10
17秒前
好好学习发布了新的文献求助10
20秒前
20秒前
20秒前
忧郁芹菜发布了新的文献求助10
21秒前
22秒前
英俊的铭应助JinguoChen采纳,获得10
24秒前
所所应助JinguoChen采纳,获得10
24秒前
24秒前
25秒前
26秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829329
求助须知:如何正确求助?哪些是违规求助? 3372001
关于积分的说明 10470217
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770830