Dimensional Neuroimaging Endophenotypes: Neurobiological Representations of Disease Heterogeneity Through Machine Learning

内表型 神经影像学 神经科学 心理学 疾病 精神分裂症(面向对象编程) 神经学 医学 精神科 认知 病理
作者
Junhao Wen,Mathilde Antoniades,Zhijian Yang,Gyujoon Hwang,Ioanna Skampardoni,Rongguang Wang,Christos Davatzikos
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:96 (7): 564-584 被引量:20
标识
DOI:10.1016/j.biopsych.2024.04.017
摘要

Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes with different brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal magnetic resonance imaging to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, and multiple sclerosis, as well as their potential in a transdiagnostic framework, where neuroanatomical and neurobiological commonalities were assessed across diagnostic boundaries. Subsequently, we summarize relevant machine learning methodologies and their clinical interpretability. We discuss the potential clinical implications of the current findings and envision future research avenues. Finally, we discuss an emerging paradigm called dimensional neuroimaging endophenotypes. Dimensional neuroimaging endophenotypes dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into low-dimensional yet informative, quantitative brain phenotypic representations, serving as robust intermediate phenotypes (i.e., endophenotypes), presumably reflecting the interplay of underlying genetic, lifestyle, and environmental processes associated with disease etiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助激情的不弱采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
研友_nEWRJ8完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785731
求助须知:如何正确求助?哪些是违规求助? 5689865
关于积分的说明 15468249
捐赠科研通 4914829
什么是DOI,文献DOI怎么找? 2645379
邀请新用户注册赠送积分活动 1593134
关于科研通互助平台的介绍 1547470