Adaptive self-calibrated soft sensor for reliable nutrient measurement in rivers: Two-stage stacked autoencoder with densely connected fusion network

自编码 融合 阶段(地层学) 传感器融合 软传感器 营养物 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 生物 人工神经网络 生态学 地质学 语言学 过程(计算) 操作系统 哲学 古生物学
作者
Abdulrahman H. Ba-Alawi,Hanaa Aamer,Mohammed A. Al‐masni,ChangKyoo Yoo
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:63: 105494-105494 被引量:7
标识
DOI:10.1016/j.jwpe.2024.105494
摘要

A soft sensor effectively estimates concentrations of total nitrogen (TN) and total phosphorus (TP) in rivers by utilizing easily measurable variables. However, in practical applications, the malfunction in sensors measuring easy-to-measure variables causes a deficiency in the developed TN and TP soft sensors. This study proposes an adaptive dual-stage soft sensor model (FAE-DNet) by stacking a fusion autoencoder (FAE) with a densely connected network (DNet) to estimate TN and TP reliably. In the first stage, a dataset consisting of ten biological-chemical variables with faulty measurements was self-calibrated using the FAE model. Subsequently, the second stage utilized the self-calibrated sensor data as input to the DNet to predict the TN and TP effectively. Furthermore, an explainable artificial intelligence (XAI) analysis was employed to elucidate the performance of the developed deep AI soft sensor model. The first-stage, FAE model, effectively handled faulty measurements, with low MSE values: 0.0913 for electrical conductivity (EC) and 0.1571 for dissolved oxygen (DO). In the second stage with DNet, nutrient prediction showed a superior R 2 value of 0.9557. However, the prediction showed a very poor performance with an R 2 value of 0.0749 when faulty data were utilized as input to the DNet without calibration using the FAE, highlighting the reliability of the two-stage FAE-DNet for precise nutrient estimation. Thus, the proposed FAE-DNet model provides advanced water quality monitoring through a self-calibrated soft sensor that accurately predicts TN and TP, making it a promising tool for monitoring waterbodies. • A dual-stage DL model based soft sensor for water nutrients monitoring was newly proposed. • First-stage based on FAE outperformed in reconstructing faulty measurements (MSE = 0.0913). • Second-stage based on DNet showed explainable and superior prediction of nutrients (R2 = 0.9557). • Residual error decreases by 89.44 % and 50.68 % in calibrated case compared to faulty case. • DNet based soft sensor outperformed, DNN, RF, and XGBoost models in nutrients prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4166Maggie关注了科研通微信公众号
2秒前
笨笨芯举报小杰瑞求助涉嫌违规
2秒前
bkagyin应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
16秒前
Yi羿完成签到 ,获得积分10
17秒前
lina完成签到,获得积分10
19秒前
Malmever发布了新的文献求助20
21秒前
Nuyoah完成签到 ,获得积分10
22秒前
天天好心覃完成签到 ,获得积分10
26秒前
26秒前
cdercder应助燕子采纳,获得10
28秒前
脑洞疼应助欣慰的以云采纳,获得10
28秒前
赘婿应助Malmever采纳,获得10
30秒前
肖舒震发布了新的文献求助10
33秒前
可爱问夏完成签到,获得积分10
38秒前
Aeastie发布了新的文献求助10
39秒前
42秒前
脑洞疼应助WeynneBao采纳,获得30
43秒前
KING完成签到,获得积分10
44秒前
Aeastie完成签到,获得积分10
46秒前
科研通AI5应助可爱问夏采纳,获得10
47秒前
48秒前
makeouthill发布了新的文献求助20
54秒前
我不看月亮完成签到,获得积分10
58秒前
1分钟前
juzitinghai发布了新的文献求助10
1分钟前
深海鳕鱼完成签到,获得积分10
1分钟前
柒柒完成签到,获得积分10
1分钟前
makeouthill完成签到,获得积分10
1分钟前
1分钟前
shenqian完成签到,获得积分10
1分钟前
xiaowang完成签到,获得积分10
1分钟前
1分钟前
彭于晏应助xin采纳,获得10
1分钟前
1分钟前
杜du完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776445
求助须知:如何正确求助?哪些是违规求助? 3321879
关于积分的说明 10208141
捐赠科研通 3037221
什么是DOI,文献DOI怎么找? 1666605
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872