亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discernment of textile fibers by polarization-sensitive Digital Holographic microscope and machine learning

织物 材料科学 偏振显微镜 羊毛 显微镜 计算机科学 服装 全息术 复合材料 工艺工程 光学 工程类 物理 考古 历史
作者
Marika Valentino,Jaromír Běhal,Cinzia Tonetti,Riccardo Andrea Carletto,Simona Itri,Pasquale Memmolo,Ettore Stella,Lisa Miccio,Vittorio Bianco,P. Ferraro
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:181: 108395-108395 被引量:6
标识
DOI:10.1016/j.optlaseng.2024.108395
摘要

Garment quality and preciousness depend on the type of textile fiber used in the manufacturing. The softer and rarer the animal fiber, the more expensive the textile garment. The cheapest clothes are made by mixing precious fibers such as cashmere with common ones such as sheep wool. To stop clothing counterfeit and quality forgery, checking the type of animal fibers used in textile industries is pivotal. More in general, law regulations require that the declared composition of a tissue meet some standards of quality that have to be assayed carefully by expert operators. Microscopy techniques such as Scanning Electron Microscopy (SEM) and Light Microscopy (LM) are commonly used to discriminate between textile animal fibers. However, analysis by SEM and LM depends on skilled experts called to judge, one-by-one, each fiber. This process is slow, cumbersome, and may be inaccurate, especially if the textile fibers share similar morphologies. Furthermore, the chemical treatments required by some textile processes can heavily modify the morphology of the fibers making more difficult to get correct results. In this work, the textile animal fibers are characterized by a polarization-sensitive, stain-free, Digital Holographic Microscopy (DHM) technique. In particular, we show how cashmere and wool fibers differ according to their anisotropy properties, e.g., birefringence. The optical characterization of textile fibers through the Jones matrix formalism allowed us extracting polarization-dependent DH features capable of accurately classifying three types of animal microfibers using a machine learning approach. Such promising results smooth the path towards an automatic, rapid, and objective identification process for textile industry and standardization purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
许12发布了新的文献求助10
39秒前
酷波er应助独特的秋采纳,获得10
52秒前
传奇3应助nini采纳,获得10
52秒前
1分钟前
独特的秋发布了新的文献求助10
1分钟前
1分钟前
mmyhn发布了新的文献求助10
1分钟前
ys完成签到 ,获得积分10
1分钟前
1分钟前
nini发布了新的文献求助10
1分钟前
香蕉觅云应助AS采纳,获得10
2分钟前
2分钟前
maox1aoxin发布了新的文献求助50
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科研通AI6应助许12采纳,获得10
3分钟前
小袁完成签到 ,获得积分10
4分钟前
Jasper应助独特的秋采纳,获得10
4分钟前
4分钟前
4分钟前
AS发布了新的文献求助10
4分钟前
WebCasa发布了新的文献求助50
5分钟前
002完成签到,获得积分0
5分钟前
level完成签到 ,获得积分10
5分钟前
Owen应助科研通管家采纳,获得10
5分钟前
obedVL完成签到,获得积分10
6分钟前
Yini应助WebCasa采纳,获得50
6分钟前
早川发布了新的文献求助30
7分钟前
7分钟前
7分钟前
黑熊精完成签到,获得积分20
7分钟前
黑熊精发布了新的文献求助10
7分钟前
JamesPei应助科研通管家采纳,获得10
7分钟前
脑洞疼应助科研通管家采纳,获得10
7分钟前
英姑应助科研通管家采纳,获得10
7分钟前
深情安青应助ceeray23采纳,获得20
8分钟前
ceeray23发布了新的文献求助20
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595749
求助须知:如何正确求助?哪些是违规求助? 4680984
关于积分的说明 14818198
捐赠科研通 4652657
什么是DOI,文献DOI怎么找? 2535641
邀请新用户注册赠送积分活动 1503542
关于科研通互助平台的介绍 1469764