Bi-Discriminator Domain Adversarial Neural Networks With Class-Level Gradient Alignment

鉴别器 计算机科学 人工智能 领域(数学分析) 稳健性(进化) 机器学习 模式识别(心理学) 预处理器 算法 数据挖掘 数学 数学分析 电信 探测器 生物化学 化学 基因
作者
Chuang Zhao,Hongke Zhao,Hengshu Zhu,Zhenya Huang,Nan Feng,Enhong Chen,Hui Xiong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (9): 5283-5295 被引量:3
标识
DOI:10.1109/tsmc.2024.3402750
摘要

Unsupervised domain adaptation aims to transfer rich knowledge from the annotated source domain to the unlabeled target domain with the same label space. One prevalent genre is the bi-discriminator domain adversarial network, which concurrently considers the decision boundaries of both domains during the domain alignment. While effective, methods within this genre still contend with accuracy agnosticism toward the target domain and overconfident estimation in the source domain. Consequently, these two limitations hinder the effectiveness of both decision boundaries. To address the aforementioned challenges, we propose a novel bi-discriminator domain adversarial neural network, denoted as BACG. Specifically, for accuracy awareness of the target domain, we initially devise an optimizable nearest neighbor algorithm for acquiring pseudo-labels of samples, followed by class-level gradient alignment between two domains. This approach explicitly incorporates the accuracy signal from the target domain. To alleviate overconfident estimation in the source domain, we adopt evidential learning theory and develop a multinomial Dirichlet hierarchical model to infer both the classification probability and uncertainty. This approach not only ensures optimal assumptions for the source domain but also guarantees high-quality domain alignment. Additionally, to lower the time overhead caused by pseudo-label assignment, we introduce a memory bank-based variant, namely, fast-BACG, which effectively accelerates the training process at the expense of a slight reduction in accuracy. Extensive experiments and thorough analysis on four benchmark data sets validate the effectiveness and robustness of our algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如绿豆冰完成签到,获得积分10
刚刚
1秒前
林谩完成签到 ,获得积分10
2秒前
整齐的夏之完成签到,获得积分10
3秒前
领导范儿应助三明治采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
搜集达人应助Chaos采纳,获得10
7秒前
7秒前
7秒前
yangminghan发布了新的文献求助10
8秒前
曾天祥完成签到,获得积分10
9秒前
9秒前
11秒前
儒雅梦寒发布了新的文献求助10
11秒前
伶俐百川发布了新的文献求助10
12秒前
123发布了新的文献求助10
12秒前
qxy完成签到,获得积分10
13秒前
licheng应助鱼丸采纳,获得10
14秒前
Forizix发布了新的文献求助10
14秒前
顾矜应助ljw采纳,获得10
15秒前
淡逆月发布了新的文献求助10
16秒前
白告羊羽完成签到 ,获得积分10
17秒前
17秒前
儒雅梦寒完成签到,获得积分10
18秒前
李健的小迷弟应助一一采纳,获得10
18秒前
18秒前
Forizix完成签到,获得积分10
18秒前
19秒前
19秒前
ggghost完成签到 ,获得积分10
20秒前
攒一口袋星星完成签到,获得积分10
21秒前
Orange应助李成博采纳,获得10
22秒前
24秒前
达达利亚发布了新的文献求助10
24秒前
25秒前
doudou完成签到 ,获得积分10
26秒前
烟花应助包容凌翠采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776536
求助须知:如何正确求助?哪些是违规求助? 4108351
关于积分的说明 12708597
捐赠科研通 3829583
什么是DOI,文献DOI怎么找? 2112646
邀请新用户注册赠送积分活动 1136483
关于科研通互助平台的介绍 1020162