Trajectory Prediction of Port Container Trucks Based on DeepPBM-Attention

卡车 容器(类型理论) 端口(电路理论) 弹道 计算机科学 航空学 海洋工程 环境科学 汽车工程 工程类 机械工程 物理 天文
作者
Haixiong Ye,Kairong LUAN,Mei Yang,X. Zhang,Yue Zhou
出处
期刊:Promet-traffic & Transportation [University of Zagreb, Faculty of Transport and Traffic Sciences]
卷期号:36 (3): 525-543
标识
DOI:10.7307/ptt.v36i3.420
摘要

Existing tracking algorithms mostly rely on model-driven approaches, which can be prone to inaccuracies due to unpredictable human behaviours. This article aims to address the issue of transient errors in tracking port container trucks (PCTrucks) when encountering obstructions. A data-driven algorithm for predicting vehicle trajectories is proposed in this study. The approach involves preprocessing an extensive dataset of GPS information, training a DeepLSTM-Attention model, and integrating the proposed model with the population-based training (PBT) algorithm to optimise network hyperparameters. The objective is to enhance the accuracy of predicting trajectories for vehicles moving horizontally. The trajectory data used are collected from real-world port operations. This research is conducted across nine trajectory segments and benchmarked against traditional approaches like Kalman filtering, machine learning techniques such as support vector regression (SVR) and standard long short-term memory (LSTM) networks. The results demonstrate that the proposed prediction method, that is, DeepPBM-Attention, outperforms other techniques in several evaluation metrics, including root mean square error (RMSE), mean absolute error (MAE), F1 score and trajectory reconstruction error (TRE). Compared to LSTM networks, the performance of DeepPBM-Attention is improved by approximately 40%. The proposed data-driven trajectory prediction algorithm exhibits high accuracy and practicality, which can effectively be applied to the positioning prediction of horizontally moving vehicles in port environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydsyk完成签到,获得积分10
刚刚
Taylor完成签到,获得积分20
刚刚
刚刚
啊啊完成签到,获得积分10
刚刚
Smole完成签到,获得积分10
1秒前
1秒前
momo完成签到,获得积分10
1秒前
1秒前
酷波er应助12366666采纳,获得10
2秒前
王SQ完成签到 ,获得积分10
2秒前
feng完成签到 ,获得积分10
2秒前
moroa完成签到,获得积分10
3秒前
4秒前
流露完成签到,获得积分10
5秒前
Monica发布了新的文献求助10
5秒前
yang完成签到,获得积分10
5秒前
champtin完成签到 ,获得积分20
5秒前
纯真冰露完成签到,获得积分10
6秒前
SYLH应助成就小懒虫采纳,获得10
6秒前
7秒前
Yyy发布了新的文献求助10
7秒前
WANGs发布了新的文献求助10
8秒前
Chamsel完成签到,获得积分10
8秒前
Arml完成签到 ,获得积分10
8秒前
8秒前
Fa完成签到,获得积分10
8秒前
繁荣的忆文完成签到,获得积分10
8秒前
科研通AI5应助殇春秋采纳,获得10
8秒前
步行街车神ahua完成签到,获得积分10
9秒前
Sene完成签到,获得积分10
10秒前
10秒前
wanci应助Cynthia采纳,获得10
10秒前
guozizi完成签到,获得积分10
10秒前
吴学仕完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
科目三应助烨霖采纳,获得10
12秒前
豚豚完成签到,获得积分10
12秒前
yuuu完成签到 ,获得积分10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816166
求助须知:如何正确求助?哪些是违规求助? 3359723
关于积分的说明 10404224
捐赠科研通 3077544
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767787