SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images

计算机科学 人工智能 模式识别(心理学) 分割
作者
Jiajia Li,Pingping Zhang,Xia Yang,Lei Zhu,Teng Wang,Ping Zhang,Ruhan Liu,Bin Sheng,Kaixuan Wang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102919-102919 被引量:5
标识
DOI:10.1016/j.artmed.2024.102919
摘要

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助BIGer采纳,获得10
刚刚
WUHUDASM发布了新的文献求助10
刚刚
1秒前
2秒前
小蘑菇应助钩子89采纳,获得10
2秒前
七安完成签到,获得积分10
2秒前
科研通AI5应助博修采纳,获得30
3秒前
Ender发布了新的文献求助10
4秒前
科研通AI5应助yiyi采纳,获得10
5秒前
5秒前
5秒前
5秒前
害怕的老三完成签到,获得积分10
6秒前
7秒前
Ava应助朴实觅波采纳,获得10
7秒前
8秒前
七安发布了新的文献求助10
8秒前
8秒前
天天快乐应助噜啦啦采纳,获得10
8秒前
hh完成签到,获得积分10
9秒前
xlj发布了新的文献求助10
9秒前
马宇飞发布了新的文献求助10
9秒前
10秒前
10秒前
Cindy发布了新的文献求助10
10秒前
Steven发布了新的文献求助30
11秒前
11秒前
11秒前
12秒前
zhai957完成签到,获得积分10
13秒前
tough发布了新的文献求助10
13秒前
华仔应助亚尔采纳,获得10
13秒前
整齐豆芽发布了新的文献求助10
13秒前
14秒前
14秒前
星辰大海应助慕辰采纳,获得10
14秒前
15秒前
BIGer发布了新的文献求助10
15秒前
randi发布了新的文献求助10
15秒前
淡淡的襄发布了新的文献求助10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4152544
求助须知:如何正确求助?哪些是违规求助? 3688415
关于积分的说明 11652299
捐赠科研通 3381095
什么是DOI,文献DOI怎么找? 1855491
邀请新用户注册赠送积分活动 917354
科研通“疑难数据库(出版商)”最低求助积分说明 830922