亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images

计算机科学 人工智能 模式识别(心理学) 分割
作者
Jiajia Li,Pingping Zhang,Xia Yang,Lei Zhu,Teng Wang,Ping Zhang,Ruhan Liu,Bin Sheng,Kaixuan Wang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102919-102919 被引量:5
标识
DOI:10.1016/j.artmed.2024.102919
摘要

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助cccc1111111采纳,获得10
10秒前
1分钟前
YP_024发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
隐形曼青应助YP_024采纳,获得10
1分钟前
WEN发布了新的文献求助10
1分钟前
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
WEN完成签到,获得积分10
1分钟前
YP_024完成签到,获得积分10
1分钟前
1分钟前
1分钟前
天边道士发布了新的文献求助10
1分钟前
容布丁发布了新的文献求助10
1分钟前
共享精神应助橙子采纳,获得10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
4分钟前
香蕉觅云应助妩媚的幼丝采纳,获得10
4分钟前
我要读博士完成签到 ,获得积分10
4分钟前
小松鼠完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
妩媚的幼丝完成签到,获得积分20
4分钟前
Babyj发布了新的文献求助10
5分钟前
SWEETYXY应助妩媚的幼丝采纳,获得10
5分钟前
Hello应助Claudia采纳,获得10
5分钟前
5分钟前
5分钟前
happyxuexi发布了新的文献求助10
5分钟前
Babyj完成签到,获得积分10
5分钟前
lovexz完成签到,获得积分10
5分钟前
上官若男应助Claudia采纳,获得10
5分钟前
SciGPT应助科研通管家采纳,获得30
5分钟前
5分钟前
5分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808036
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360120
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810348
科研通“疑难数据库(出版商)”最低求助积分说明 766033