亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel model watermarking for protecting generative adversarial network

计算机科学 水印 数字水印 人工智能 图像(数学) 发电机(电路理论) 深度学习 计算机安全 机器学习 量子力学 物理 功率(物理)
作者
Tong Qiao,Ma Yuyan,Ning Zheng,Hanzhou Wu,Yanli Chen,Ming Xu,Xiangyang Luo
出处
期刊:Computers & Security [Elsevier BV]
卷期号:127: 103102-103102 被引量:17
标识
DOI:10.1016/j.cose.2023.103102
摘要

With the advance of deep learning, it definitely has achieved the unprecedented success in the community of artificial intelligence. However, the issue of the intellectual property (IP) protection towards deep learning model is usually ignored, which largely threats the interests of the model owner. Currently, although a few schemes of model watermarking have been continuously proposed, in order to protect the specific neural network designed for detection or classification task, most of them are hardly directly applicable to generative adversarial networks (GAN). To our knowledge, the GAN model has plays more and more important role in the computer vision, such as image-to-image translation, text-to-image translation, image inpainting and etc., which remarkably improves the capability of image generation. Similarly, the malicious attackers possibly steal a trained GAN model to infringe the IP of the true model owner. To address that challenging issue, it is proposed to establish the framework of model watermarking towards GAN model. In particular, we first establish the trigger set by combining the watermark label with the verification image. Next, the watermarked generator is efficiently trained on the premise of preserving the original model performance. Finally, only relying on the correct watermark label, the synthetic watermark can be successfully triggered by the model owner for IP protection. The extensive experiments have verified the effectiveness and generalization of our designed method, which can easily be applicable to the benchmark GAN models such as WGAN-GP, ProGAN and StyleGAN2. Moreover, our proposed model watermark is robust enough to resist against the mainstream attacks, such as parameter fine-tuning and model pruning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助lzy采纳,获得10
2秒前
4秒前
YBR发布了新的文献求助10
8秒前
知足的憨人*-*完成签到,获得积分10
10秒前
14秒前
15秒前
瑶瑶公主会刷盾完成签到 ,获得积分10
17秒前
18秒前
25秒前
31秒前
端己发布了新的文献求助10
32秒前
爆米花应助冰冰采纳,获得10
33秒前
哈哈哈哈完成签到 ,获得积分10
33秒前
orixero应助leslie采纳,获得10
36秒前
敏感的怜寒完成签到,获得积分20
36秒前
单薄乐珍完成签到 ,获得积分0
40秒前
43秒前
端己完成签到,获得积分10
45秒前
大模型应助wannna采纳,获得10
50秒前
51秒前
科研通AI5应助独特的幻悲采纳,获得10
56秒前
wannna完成签到,获得积分20
58秒前
冰冰发布了新的文献求助10
58秒前
可爱的函函应助fheu采纳,获得10
59秒前
Jeongin发布了新的文献求助10
1分钟前
1分钟前
宝贝丫头完成签到 ,获得积分10
1分钟前
刘小小完成签到,获得积分20
1分钟前
小米的稻田完成签到 ,获得积分10
1分钟前
1分钟前
茜茜完成签到 ,获得积分10
1分钟前
1分钟前
zmxpkq完成签到,获得积分20
1分钟前
1分钟前
xixi完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
汉堡包应助firesquall采纳,获得10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800884
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681235
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702