清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models

接收机工作特性 机器学习 人工智能 冠状动脉疾病 重症监护室 支持向量机 肾脏疾病 决策树 医学 随机森林 逻辑回归 计算机科学 特征选择 预测分析 计算机辅助设计 梯度升压 内科学 工程类 工程制图
作者
Zixiang Ye,Shuoyan An,Yanxiang Gao,Enmin Xie,Xin Zhao,Ziyu Guo,Yike Li,Nan Shen,Jingyi Ren,Jingang Zheng
出处
期刊:European Journal of Medical Research [BioMed Central]
卷期号:28 (1) 被引量:3
标识
DOI:10.1186/s40001-023-00995-x
摘要

Chronic kidney disease (CKD) patients with coronary artery disease (CAD) in the intensive care unit (ICU) have higher in-hospital mortality and poorer prognosis than patients with either single condition. The objective of this study is to develop a novel model that can predict the in-hospital mortality of that kind of patient in the ICU using machine learning methods.Data of CKD patients with CAD were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Boruta algorithm was conducted for the feature selection process. Eight machine learning algorithms, such as logistic regression (LR), random forest (RF), Decision Tree, K-nearest neighbors (KNN), Gradient Boosting Decision Tree Machine (GBDT), Support Vector Machine (SVM), Neural Network (NN), and Extreme Gradient Boosting (XGBoost), were conducted to construct the predictive model for in-hospital mortality and performance was evaluated by average precision (AP) and area under the receiver operating characteristic curve (AUC). Shapley Additive Explanations (SHAP) algorithm was applied to explain the model visually. Moreover, data from the Telehealth Intensive Care Unit Collaborative Research Database (eICU-CRD) were acquired as an external validation set.3590 and 1657 CKD patients with CAD were acquired from MIMIC-IV and eICU-CRD databases, respectively. A total of 78 variables were selected for the machine learning model development process. Comparatively, GBDT had the highest predictive performance according to the results of AUC (0.946) and AP (0.778). The SHAP method reveals the top 20 factors based on the importance ranking. In addition, GBDT had good predictive value and a certain degree of clinical value in the external validation according to the AUC (0.865), AP (0.672), decision curve analysis, and calibration curve.Machine learning algorithms, especially GBDT, can be reliable tools for accurately predicting the in-hospital mortality risk for CKD patients with CAD in the ICU. This contributed to providing optimal resource allocation and reducing in-hospital mortality by tailoring precise management and implementation of early interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Tracy采纳,获得10
10秒前
润润润完成签到 ,获得积分10
15秒前
发个15分的完成签到 ,获得积分10
17秒前
科研狗完成签到 ,获得积分10
18秒前
26秒前
33秒前
Lei完成签到,获得积分10
33秒前
明小丽完成签到,获得积分10
37秒前
39秒前
贪玩的听荷完成签到,获得积分10
45秒前
无一完成签到 ,获得积分0
45秒前
秀丽静曼发布了新的文献求助10
45秒前
Song完成签到 ,获得积分10
46秒前
徐团伟完成签到 ,获得积分10
51秒前
隐形曼青应助123采纳,获得10
52秒前
南浔完成签到 ,获得积分10
54秒前
秀丽静曼完成签到,获得积分20
59秒前
Ziqingserra完成签到 ,获得积分10
1分钟前
小豆芽完成签到,获得积分10
1分钟前
王波完成签到 ,获得积分10
1分钟前
愉快无心完成签到 ,获得积分10
1分钟前
时老完成签到 ,获得积分10
1分钟前
hzauhzau完成签到 ,获得积分10
1分钟前
小蘑菇应助小医采纳,获得10
1分钟前
李y梅子完成签到 ,获得积分10
1分钟前
卫卫完成签到 ,获得积分10
1分钟前
双双完成签到 ,获得积分10
1分钟前
猪猪完成签到 ,获得积分10
1分钟前
1分钟前
小医发布了新的文献求助10
1分钟前
Regulusyang完成签到,获得积分10
1分钟前
淡然的芷荷完成签到 ,获得积分10
1分钟前
研究生完成签到 ,获得积分10
1分钟前
wanci应助小医采纳,获得10
1分钟前
典雅三颜完成签到 ,获得积分10
2分钟前
儒雅的如松完成签到 ,获得积分10
2分钟前
2分钟前
0109完成签到,获得积分10
2分钟前
白华苍松发布了新的文献求助10
2分钟前
Hello应助20240901采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4844974
求助须知:如何正确求助?哪些是违规求助? 4145103
关于积分的说明 12834036
捐赠科研通 3891821
什么是DOI,文献DOI怎么找? 2139351
邀请新用户注册赠送积分活动 1159329
关于科研通互助平台的介绍 1060013