A sustainable revival process for defective LiFePO4 cathodes through the synergy of defect-targeted healing and in-situ construction of 3D-interconnected porous carbon networks

阴极 材料科学 化学工程 电化学 多孔性 退火(玻璃) 纳米技术 电池(电) 碳纤维 电极 复合数 复合材料 化学 工程类 物理化学 功率(物理) 物理 量子力学
作者
Jing Sun,Zhenyu Jiang,Pingshan Jia,Li Su,Wenlong Wang,Zhanlong Song,Yanpeng Mao,Xiqiang Zhao,Bingqian Zhou
出处
期刊:Waste Management [Elsevier]
卷期号:158: 125-135 被引量:41
标识
DOI:10.1016/j.wasman.2023.01.012
摘要

The reutilization of spent cathode materials plays a key role in the sustainable development of Li-ion battery technology. However, current recycling approaches generally based on hydro-/pyrometallurgy fail to cater to Co-free cathodes (e.g., LiFePO4, or LFP) owing to high consumption and secondary contamination. Here, a sustainable process is proposed for the revival of defective LFP cathodes through the synergy of defect-targeted healing and surface modification. Li deficiency and Fe oxidation of cathodes are precisely repaired by solution-based relithiation; meanwhile, 3D-interconnected porous carbon networks (3dC) are in-situ constructed with the intervention of salt template during annealing, which enhances the rate performance and electronic/ionic conductivity, by providing more convenient migration channels for Li ions and controlling carbon hybridization. Nitrogen is also doped via induction of urea to fabricate advanced nanohybrid rLFP@3dC-N. New cells using rLFP@3dC-N as cathode exhibit a reversible capacity of up to 169.74 and 141.79 mAh g-1 at 0.1 and 1C, respectively, with an excellent retention rate of over 95.7% at 1C after 200 cycles. Impressively, a high capacity of 107.18 mAh g-1 is retained at 5C. This novel concepts for Li replenishment and the construction of ion-transfer channels as well as conductive networks facilitate the regeneration of spent LFP and the optimization of its high-rate performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
3秒前
七七发布了新的文献求助10
7秒前
Koi完成签到,获得积分10
8秒前
dotty完成签到,获得积分20
8秒前
monica完成签到,获得积分10
11秒前
LiLi完成签到 ,获得积分10
12秒前
ZZZZAAAAA完成签到,获得积分10
13秒前
14秒前
超级小刺猬完成签到 ,获得积分10
16秒前
17秒前
愉快豪发布了新的文献求助10
17秒前
20秒前
21秒前
21秒前
木沐发布了新的文献求助10
24秒前
枫枫829发布了新的文献求助10
25秒前
26秒前
小王同学完成签到,获得积分10
26秒前
晨阳发布了新的文献求助10
26秒前
27秒前
byzhao19完成签到,获得积分10
28秒前
隋雪松完成签到 ,获得积分10
29秒前
Angora发布了新的文献求助10
30秒前
30秒前
青梧发布了新的文献求助10
32秒前
haha完成签到 ,获得积分10
32秒前
李健应助一漾采纳,获得10
34秒前
小李完成签到,获得积分10
35秒前
啦啦啦完成签到 ,获得积分10
35秒前
汉堡包应助青梧采纳,获得10
40秒前
44秒前
wlscj应助Lico采纳,获得20
46秒前
47秒前
那只幸运的小肥羊完成签到,获得积分10
48秒前
yueshao完成签到,获得积分10
50秒前
Ray发布了新的文献求助10
51秒前
丰富的乐儿完成签到,获得积分10
51秒前
CipherSage应助晨阳采纳,获得10
52秒前
zz完成签到,获得积分10
54秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295962
求助须知:如何正确求助?哪些是违规求助? 4445317
关于积分的说明 13835911
捐赠科研通 4329946
什么是DOI,文献DOI怎么找? 2376831
邀请新用户注册赠送积分活动 1372199
关于科研通互助平台的介绍 1337534