PILE: Robust Privacy-Preserving Federated Learning Via Verifiable Perturbations

正确性 计算机科学 可验证秘密共享 稳健性(进化) 数学证明 联合学习 分布式计算 人工智能 理论计算机科学 算法 生物化学 化学 几何学 数学 集合(抽象数据类型) 基因 程序设计语言
作者
Xiangyun Tang,Meng Shen,Qi Li,Liehuang Zhu,Tengfei Xue,Qiang Qu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:20 (6): 5005-5023 被引量:13
标识
DOI:10.1109/tdsc.2023.3239007
摘要

Federated learning (FL) protects training data in clients by collaboratively training local machine learning models of clients for a global model, instead of directly feeding the training data to the server. However, existing studies show that FL is vulnerable to various attacks, resulting in training data leakage or interfering with the model training. Specifically, an adversary can analyze local gradients and the global model to infer clients’ data, and poison local gradients to generate an inaccurate global model. It is extremely challenging to guarantee strong privacy protection of training data while ensuring the robustness of model training. None of the existing studies can achieve the goal. In this paper, we propose a robust privacy-preserving federated learning framework (PILE), which protects the privacy of local gradients and global models, while ensuring their correctness by gradient verification where the server verifies the computation process of local gradients. In PILE, we develop a verifiable perturbation scheme that makes confidential local gradients verifiable for gradient verification. In particular, we build two building blocks of zero-knowledge proofs for the gradient verification without revealing both local gradients and global models. We perform rigorous theoretical analysis that proves the security of PILE and evaluate PILE on both passive and active membership inference attacks. The experiment results show that the attack accuracy under PILE is between $[50.3\%,50.9\%]$ , which is close to the random guesses. Particularly, compared to prior defenses that incur the accuracy losses ranging from 2% to 13%, the accuracy loss of PILE is negligible, i.e., only $\pm 0.3\%$ accuracy loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
13313完成签到,获得积分10
2秒前
4秒前
4秒前
紫罗兰花海完成签到 ,获得积分10
4秒前
Nancy发布了新的文献求助10
5秒前
慧子发布了新的文献求助10
7秒前
yc发布了新的文献求助10
9秒前
研友_LJGOan完成签到,获得积分10
10秒前
研友_851KE8发布了新的文献求助10
12秒前
今后应助老饕采纳,获得10
12秒前
顺利的战斗机完成签到,获得积分10
14秒前
可爱牛排完成签到,获得积分10
14秒前
dudu完成签到 ,获得积分10
15秒前
15秒前
Carpe发布了新的文献求助10
15秒前
16秒前
18秒前
19秒前
深情安青应助路宝采纳,获得10
19秒前
20秒前
丰富飞阳发布了新的文献求助10
20秒前
星辰大海应助自由寄柔采纳,获得30
21秒前
乐观的莫茗完成签到,获得积分20
22秒前
敏子发布了新的文献求助10
22秒前
23秒前
上官若男应助Jayce采纳,获得10
23秒前
25秒前
25秒前
cai完成签到,获得积分10
25秒前
司马千筹发布了新的文献求助10
25秒前
27秒前
七栀完成签到,获得积分10
28秒前
靓丽瓦驴发布了新的文献求助10
29秒前
小雪糕发布了新的文献求助100
29秒前
农夫果园完成签到,获得积分10
30秒前
30秒前
HopeStar完成签到,获得积分10
30秒前
Ava应助1177采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794562
求助须知:如何正确求助?哪些是违规求助? 3339387
关于积分的说明 10295828
捐赠科研通 3056074
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804920
科研通“疑难数据库(出版商)”最低求助积分说明 762191