Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network

医学 食管鳞状细胞癌 放射科 特征(语言学) 人工智能 模式识别(心理学) 内科学 计算机科学 语言学 哲学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Bingjie Fan,Li Ma,Zhendan Wang,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:116 (3): 676-689 被引量:8
标识
DOI:10.1016/j.ijrobp.2022.12.050
摘要

This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters.Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction.Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853).Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cuer发布了新的文献求助10
2秒前
Kevin完成签到,获得积分10
2秒前
那时花开应助单薄的蛋挞采纳,获得10
4秒前
5秒前
直率的听露完成签到 ,获得积分10
6秒前
小白发布了新的文献求助30
7秒前
嗯嗯完成签到,获得积分10
7秒前
无花果应助luxian采纳,获得10
7秒前
谦让世立完成签到,获得积分10
8秒前
爱撒娇的香烟完成签到,获得积分10
9秒前
Hello应助都是神经病采纳,获得10
10秒前
10秒前
11秒前
12秒前
李健的小迷弟应助叶远望采纳,获得10
12秒前
Hw发布了新的文献求助10
14秒前
15秒前
WYJ完成签到,获得积分10
15秒前
16秒前
浪子发布了新的文献求助10
17秒前
cuer完成签到,获得积分10
18秒前
Shawn完成签到,获得积分10
18秒前
花开花落花无悔完成签到 ,获得积分10
19秒前
20秒前
21秒前
机灵的老李完成签到,获得积分20
21秒前
小趴蔡完成签到 ,获得积分10
23秒前
小白应助hi_traffic采纳,获得10
23秒前
gffh完成签到,获得积分10
23秒前
23秒前
Cc大熊发布了新的文献求助20
24秒前
vvvvvv完成签到,获得积分10
25秒前
bkagyin应助13679165979采纳,获得10
25秒前
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
wwl发布了新的文献求助10
28秒前
28秒前
万能图书馆应助阮婷采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241