Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 化学 分析化学(期刊) 计算机科学 食品科学 色谱法 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:291: 122355-122355 被引量:25
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
kb完成签到,获得积分10
1秒前
1874发布了新的文献求助10
1秒前
1秒前
1秒前
张光光发布了新的文献求助10
1秒前
Wecple完成签到 ,获得积分10
1秒前
赖建琛完成签到 ,获得积分10
2秒前
告白气球完成签到,获得积分10
2秒前
lll发布了新的文献求助10
2秒前
科研通AI5应助cassandra1231采纳,获得100
2秒前
Jasper应助自觉士萧采纳,获得10
3秒前
繁荣的向秋完成签到,获得积分10
3秒前
宇帕完成签到,获得积分20
4秒前
谨慎寻冬完成签到,获得积分10
4秒前
小茗同学完成签到,获得积分10
4秒前
崔崔完成签到,获得积分10
5秒前
5秒前
告白气球发布了新的文献求助10
6秒前
6秒前
河豚发布了新的文献求助10
6秒前
tramp应助醉熏的凡旋采纳,获得10
6秒前
PTL关闭了PTL文献求助
6秒前
自建完成签到,获得积分10
6秒前
猎空完成签到,获得积分10
7秒前
8秒前
8秒前
杜杜完成签到,获得积分10
8秒前
8秒前
8秒前
许甜甜鸭应助聪明钢铁侠采纳,获得10
8秒前
猫与咖啡完成签到,获得积分10
8秒前
溜溜很优秀完成签到,获得积分10
8秒前
酷炫茉莉发布了新的文献求助10
9秒前
9秒前
5114完成签到,获得积分10
9秒前
漂亮水池完成签到,获得积分10
10秒前
cdercder应助忧郁芒果采纳,获得10
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830751
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477730
捐赠科研通 3093242
什么是DOI,文献DOI怎么找? 1702418
邀请新用户注册赠送积分活动 819024
科研通“疑难数据库(出版商)”最低求助积分说明 771203