Benchmarking Derivative-Free Global Optimization Algorithms Under Limited Dimensions and Large Evaluation Budgets

标杆管理 计算机科学 算法 选择(遗传算法) 质量(理念) 功能(生物学) 数学优化 机器学习 数学 营销 业务 哲学 认识论 进化生物学 生物
作者
Linas Stripinis,Jakub Kůdela,Remigijus Paulavičius
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 187-204 被引量:8
标识
DOI:10.1109/tevc.2024.3379756
摘要

This paper addresses the challenge of selecting the most suitable optimization algorithm by presenting a comprehensive computational comparison between stochastic and deterministic methods. The complexity of algorithm selection arises from the absence of a universal algorithm and the abundance of available options. Manual selection without comprehensive studies can lead to suboptimal or incorrect results. In order to address this issue, we carefully selected twenty-five promising and representative state-of-the-art algorithms from both aforementioned classes. The evaluation with up to the twenty dimensions and large evaluation budgets (105×n) was carried out in a significantly expanded and improved version of the DIRECTGOLib v2.0 library, which included ten distinct collections of primarily continuous test functions. The evaluation covered various aspects, such as solution quality, time complexity, and function evaluation usage. The rankings were determined using statistical tests and performance profiles. When it comes to the problems and algorithms examined in this study, EA4eig, EBOwithCMAR, APGSK-IMODE, 1-DTC-GL, OQNLP, and DIRMIN stand out as superior to other derivative-free solvers in terms of solution quality. While deterministic algorithms can locate reasonable solutions with comparatively fewer function evaluations, most stochastic algorithms require more extensive evaluation budgets to deliver comparable results. However, the performance of stochastic algorithms tends to excel in more complex and higher-dimensional problems. These research findings offer valuable insights for practitioners and researchers, enabling them to tackle diverse optimization problems effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
missa完成签到,获得积分10
刚刚
leegawei关注了科研通微信公众号
1秒前
1秒前
GY完成签到,获得积分10
2秒前
2秒前
3秒前
一粟的粉r完成签到 ,获得积分10
3秒前
6秒前
baifeng应助影子1127采纳,获得10
6秒前
扎心发布了新的文献求助10
7秒前
风中的凝安完成签到,获得积分10
7秒前
蓝色芒果完成签到,获得积分10
8秒前
专注的可乐完成签到,获得积分10
9秒前
江小美完成签到,获得积分10
10秒前
友好羊应助追光采纳,获得10
10秒前
11秒前
传奇3应助风中的凝安采纳,获得20
11秒前
科研通AI5应助温柔珊采纳,获得10
14秒前
三金发布了新的文献求助10
14秒前
在水一方应助丰富采纳,获得10
15秒前
17秒前
金鱼咕噜噜luu完成签到,获得积分10
18秒前
young应助dyh采纳,获得10
18秒前
LIU完成签到 ,获得积分10
21秒前
扎心发布了新的文献求助10
22秒前
等等完成签到,获得积分20
22秒前
三金完成签到,获得积分10
23秒前
leegawei发布了新的文献求助10
23秒前
lxr发布了新的文献求助20
24秒前
科目三应助hwezhu采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
wjx完成签到 ,获得积分10
27秒前
Kypsi完成签到,获得积分10
28秒前
29秒前
30秒前
Kun发布了新的文献求助10
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779966
求助须知:如何正确求助?哪些是违规求助? 3325374
关于积分的说明 10222718
捐赠科研通 3040551
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612