Game theory-based mandatory lane change model in intelligent connected vehicles environment

基线(sea) 车头时距 智能交通系统 驾驶模拟器 计算机科学 过程(计算) 模拟 随机博弈 更安全的 工程类 实时计算 人机交互 计算机安全 运输工程 海洋学 操作系统 地质学 数学 数理经济学
作者
Yugang Wang,Nengchao Lyu,Jianghui Wen
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:132: 146-165 被引量:1
标识
DOI:10.1016/j.apm.2024.04.047
摘要

In the environment of intelligent connected vehicles, drivers are capable of making wiser and safer decisions. However, the interaction between drivers and vehicle systems has undergone changes in the Intelligent Connected Vehicles environment, leading to a decrease in the applicability of existing microscopic driving models, such as the mandatory lane change model, which requires reevaluation or improvement. Therefore, to investigate the influence of different intelligent connected vehicles environments on the microscopic mandatory lane-changing model, this study developed three interaction systems to characterize different intelligent connected vehicles environments: the baseline, warning group, and guidance group. The Baseline provides basic information, the warning group adds icons of preceding vehicles and real-time headway information, while the guidance group further includes speed and voice guidance functions. The baseline describes the traditional environment, while the other two groups describe the intelligent connected vehicles environment. Using a self-developed intelligent connected vehicle testing platform, we conducted driving simulation experiments with 43 participants at the interchange merging area of a highway. This study, grounded in game theory, establishes function models for participants, strategies, and payoff functions in the mandatory lane-changing process. Utilizing data from driving simulation experiments, the parameters of the dual-layered planning model are calibrated. Evaluation of the constructed model is conducted through confusion matrices and lane-changing spatiotemporal characteristic indicators. The results demonstrate satisfactory predictive performance of the baseline group model, warning group model, and guidance group model across different intelligent connected vehicles environments. Specifically, compared to existing literature, the baseline group model exhibits improvements of 7% and 2% respectively in overall lane-changing detection accuracy by drivers. The warning group model shows improvements of 2.9% and 1.7%, while the guidance group model exhibits improvements of 5.1% and 4.3%. Additionally, the baseline group model reduces the mean absolute error in predicting different game strategies by 16.7% and 5.6% respectively compared to existing literature. Concerning lane-changing position prediction, the warning and guidance group models demonstrate minimal errors, whereas the baseline group model exhibits good consistency in predicting lane-changing duration. Furthermore, both the warning and guidance group models show some delay in predicting lane-changing duration. While intelligent connected vehicles environments significantly influence the prediction of lane-changing positions, they do not significantly affect the prediction of lane-changing duration. However, game strategies significantly impact the prediction of lane-changing duration but do not significantly affect the prediction of lane-changing positions. The study findings offer valuable insights into micro lane-changing behaviors of drivers in intelligent connected vehicles environments, bearing crucial significance for the in-depth investigation of real-time control and guidance strategies for vehicles in merge areas of highways under intelligent connected vehicles conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sseekker完成签到 ,获得积分10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
FelixChen应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
lxlcx应助科研通管家采纳,获得20
1秒前
FelixChen应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
1秒前
lxlcx应助科研通管家采纳,获得20
1秒前
1秒前
科研一路生花完成签到,获得积分10
1秒前
科研通AI5应助甜甜谷雪采纳,获得10
1秒前
杜瑞茜完成签到,获得积分20
2秒前
能干的顾完成签到,获得积分10
2秒前
Seek完成签到,获得积分10
2秒前
3秒前
4秒前
nan完成签到,获得积分10
4秒前
洪七公完成签到,获得积分10
4秒前
汉堡包应助仙宫顶针采纳,获得10
4秒前
4秒前
外向的匕发布了新的文献求助10
5秒前
John_sdu完成签到,获得积分10
6秒前
6秒前
6秒前
wayne发布了新的文献求助30
7秒前
7秒前
7秒前
Lee发布了新的文献求助10
7秒前
传奇3应助001001X采纳,获得10
8秒前
8秒前
爱吃蛋饼的zach完成签到 ,获得积分10
8秒前
9秒前
kma完成签到,获得积分10
9秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848045
求助须知:如何正确求助?哪些是违规求助? 3390808
关于积分的说明 10563631
捐赠科研通 3111243
什么是DOI,文献DOI怎么找? 1714676
邀请新用户注册赠送积分活动 825451
科研通“疑难数据库(出版商)”最低求助积分说明 775515