Highly Accurate Profiling of Exosome Phenotypes Using Super-resolution Tricolor Fluorescence Co-localization

多路复用 乳腺癌 表型 外体 荧光 化学 计算生物学 癌症 生物信息学 生物 生物化学 遗传学 微泡 物理 小RNA 基因 量子力学
作者
Jinxiu Wei,Kai Zhu,Tingyu Wang,Tongsheng Qi,Zhuyuan Wang,Jia Li,Shenfei Zong,Yiping Cui
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (14): 10206-10215 被引量:9
标识
DOI:10.1021/acsnano.4c00534
摘要

Exosomes contain a wealth of proteomic information, presenting promising biomarkers for the noninvasive early diagnosis of diseases, especially cancer. However, it remains a great challenge to accurately and reliably distinguish exosomes secreted from different types of cell lines. Fluorescence immunoassay is frequently used for exosome detection. Nonspecific adsorption in immunoassays is unavoidable and affects the reliability of assay results. Despite the fact that various methods have been proposed to reduce nonspecific adsorption, a more effective method that can eliminate the influence of nonspecific adsorption is still lacking. Here, we report a more convenient way (named SR-TFC) to remove the artifacts caused by nonspecific adsorption, which combines tricolor fluorescence labeling of target exosomes, tricolor super-resolution imaging, and pixel counting. The pixel counting method (named CFPP) is realized by MATLAB and can eliminate nonspecific binding sites at the single-pixel level, which has never been achieved before and could improve the reliability of detection to the maximum extent. Furthermore, as a proof-of-concept, profiling of exosomal membrane proteins and identification of breast cancer subpopulations are demonstrated. To enable multiplex breast cancer phenotypic analysis, three kinds of specific proteins are labeled to obtain the 3D phenotypic information on various exosomes. Breast cancer subtypes can be accurately identified according to the super-resolution images of some clinically relevant exosomal proteins. Worth mentioning is that, by selecting other biomarkers, classification of other cancers could also be realized using SR-TFC. Hence, the present work holds great potential in clinical cancer diagnosis and precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
雾野发布了新的文献求助10
3秒前
胖头鱼发布了新的文献求助10
4秒前
4秒前
5秒前
FashionBoy应助ira采纳,获得10
6秒前
完美冷安完成签到,获得积分10
8秒前
动听半雪发布了新的文献求助10
10秒前
Owen应助浩二采纳,获得10
11秒前
科研铁人完成签到 ,获得积分10
12秒前
13秒前
健康豆芽菜完成签到 ,获得积分10
16秒前
机智如霜完成签到,获得积分10
16秒前
QQ完成签到 ,获得积分10
18秒前
20秒前
李爱国应助酷炫的水蓝采纳,获得10
20秒前
大模型应助西门子云采纳,获得10
20秒前
Aries发布了新的文献求助10
20秒前
坚定睫毛膏完成签到,获得积分20
21秒前
云鹏完成签到,获得积分10
22秒前
25秒前
25秒前
25秒前
小王发布了新的文献求助10
26秒前
26秒前
27秒前
雾野完成签到,获得积分20
28秒前
sweat完成签到,获得积分20
28秒前
30秒前
科研通AI2S应助予秋采纳,获得10
30秒前
TIGun发布了新的文献求助10
31秒前
36秒前
Akim应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
pluto应助世上无难事采纳,获得10
36秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
wanci应助科研通管家采纳,获得10
36秒前
无花果应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366