Research on Intelligent Identification Algorithm for Steel Wire Rope Damage Based on Residual Network

绳子 鉴定(生物学) 残余物 钢丝绳 计算机科学 算法 法律工程学 结构工程 工程类 植物 生物
作者
Jialin Han,Yiqing Zhang,Zesen Feng,Ling Zhao
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (9): 3753-3753 被引量:10
标识
DOI:10.3390/app14093753
摘要

As a load-bearing tool, steel wire rope plays an important role in industrial production. Therefore, diagnosing the fracture and damage of steel wire ropes is of great significance for ensuring their safe operation. However, the detection and identification of wire rope breakage damage mainly focus on identifying external damage characteristics, while research on inspecting internal breakage damage is still relatively limited. To address the challenge, an intelligent detecting method is proposed in this paper for diagnosing internal wire breakage damage, and it introduces residual modules to enhance the network’s feature extraction ability. Firstly, time–frequency analysis techniques are used to convert the extracted one-dimensional magnetic flux leakage (MFL) signal into a two-dimensional time–frequency map. Secondly, the focus of this article is on constructing a residual network to identify the internal damage accurately with the features of the time–frequency map of the MFL signal being automatically extracted. Finally, the effectiveness of the proposed method in identifying broken wires is verified through comparative experiments on detecting broken wires in steel wire ropes. Three common recognition methods, the backpropagation (BP) neural network, the support vector machine (SVM), and the convolutional neural network (CNN), are used as comparisons. The experimental results show that the residual network recognition method can effectively identify internal and external wire breakage faults in steel wire ropes, which is of great significance for achieving quantitative detection of steel wire ropes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
刚刚
noflatterer完成签到,获得积分10
2秒前
大智若愚骨头完成签到,获得积分10
3秒前
Singularity完成签到,获得积分0
4秒前
lllll1243完成签到,获得积分10
4秒前
充电宝应助阿甘采纳,获得10
5秒前
Dd完成签到,获得积分10
5秒前
chaos完成签到 ,获得积分10
9秒前
obito完成签到,获得积分10
10秒前
发paper完成签到,获得积分10
11秒前
12秒前
zzbbk完成签到,获得积分10
14秒前
lee完成签到,获得积分10
16秒前
bhbmn完成签到,获得积分10
16秒前
简单的桃子完成签到,获得积分10
17秒前
17秒前
我是老大应助weddcf采纳,获得10
18秒前
阿甘发布了新的文献求助10
18秒前
echo完成签到,获得积分10
18秒前
20秒前
澄澄橙橙紫完成签到,获得积分10
20秒前
濮阳灵竹完成签到,获得积分10
21秒前
蓝天应助welbeck采纳,获得10
21秒前
李健应助UnprofessionalX采纳,获得10
21秒前
hsing完成签到,获得积分10
21秒前
雪白冥茗完成签到 ,获得积分10
22秒前
tyyyyyy完成签到,获得积分10
23秒前
阿甘完成签到,获得积分10
23秒前
23秒前
shm123321完成签到,获得积分10
23秒前
24秒前
cfyoung完成签到,获得积分10
24秒前
胖虎完成签到,获得积分10
25秒前
Schwann翠星石完成签到,获得积分10
26秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
27秒前
王泽坤完成签到 ,获得积分10
27秒前
weddcf发布了新的文献求助10
27秒前
hhh完成签到,获得积分10
27秒前
失眠的向日葵完成签到 ,获得积分10
28秒前
完美的jia发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5562135
求助须知:如何正确求助?哪些是违规求助? 4647127
关于积分的说明 14680294
捐赠科研通 4588783
什么是DOI,文献DOI怎么找? 2517666
邀请新用户注册赠送积分活动 1490783
关于科研通互助平台的介绍 1462034