多元统计
图形
系列(地层学)
计算机科学
时间序列
人工智能
模式识别(心理学)
数据挖掘
机器学习
理论计算机科学
地质学
古生物学
作者
Yucheng Wang,Yuecong Xu,Jianfei Yang,Min Wu,Xiaoli Li,Lihua Xie,Zhenghua Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2024-03-24
卷期号:38 (14): 15725-15734
被引量:12
标识
DOI:10.1609/aaai.v38i14.29501
摘要
Contrastive learning, as a self-supervised learning paradigm, becomes popular for Multivariate Time-Series (MTS) classification. It ensures the consistency across different views of unlabeled samples and then learns effective representations for these samples. Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques, aiming to preserve temporal patterns against perturbations for MTS data. However, they overlook spatial consistency that requires the stability of individual sensors and their correlations. As MTS data typically originate from multiple sensors, ensuring spatial consistency becomes essential for the overall performance of contrastive learning on MTS data. Thus, we propose Graph-Aware Contrasting for spatial consistency across MTS data. Specifically, we propose graph augmentations including node and edge augmentations to preserve the stability of sensors and their correlations, followed by graph contrasting with both node- and graph-level contrasting to extract robust sensor- and global-level features. We further introduce multi-window temporal contrasting to ensure temporal consistency in the data for each sensor. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on various MTS classification tasks. The code is available at https://github.com/Frank-Wang-oss/TS-GAC.
科研通智能强力驱动
Strongly Powered by AbleSci AI