Single atomic Pt confined into lattice defect sites for low-temperature catalytic oxidation of VOCs

催化作用 格子(音乐) 材料科学 化学物理 化学 物理 有机化学 声学
作者
Fang Dong,Yu Meng,Weitong Ling,Weigao Han,Weiliang Han,Xiao‐Na Li,Zhicheng Tang
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:346: 123779-123779 被引量:21
标识
DOI:10.1016/j.apcatb.2024.123779
摘要

Development of low-cost noble Pt-based catalyst with superior catalytic performance is a challenge to achieve its application in VOCs catalytic oxidation. Although the single atom provides a strategy to design and develop highly efficient heterogeneous catalysts that simultaneously maximizes the utilization of precious metal atoms, the stability of single atom catalysts is not satisfactory as a result of its high atomic surface energy. Here we construct a Pt1@CeO2 single atom catalyst (SAC) with excellent catalytic activity for benzene catalytic combustion (T90 = 212 °C) and low precious metal Pt loading, and even displaying an outstanding thermal stability and water resistance under the harsh conditions of 30,000 mL/g/h and 2000 ppm benzene. This Pt1@CeO2 catalyst was obtained by in situ domain limited encapsulation of Pt species in Ce-MOFs nanocages during the solvothermal reaction process. It is observed that lots of oxygen vacancies were created by the dislocation and phase transition of CeO2 to provide abundant sites for anchoring single atomic Pt, which can be localized and anchored firmly to oxygen vacancies, thus forming the highly stable Pt single atom. The atomically dispersed Pt is capable of improving the catalytic activity by forming Pt-O band. The good water resistance may be ascribed to the confined Pt single atom into oxygen vacancies of CeO2 support to form strong metal-support interaction (SMSI), and the PtOx nanoparticles would be easy to aggregate deactivation under water vapor conditions. It is a simple and universal strategy to prepare Pt SAC via the inherently confined space of MOFs nanocages formed by coordination of organic ligands and metal ions, which benefits from the functional modification of ethylene glycol in MOFs self-assembly reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sakki发布了新的文献求助10
刚刚
隐形曼青应助bora采纳,获得10
1秒前
1秒前
comic发布了新的文献求助10
2秒前
hui发布了新的文献求助10
3秒前
Jasper应助任性凤凰采纳,获得10
4秒前
林布林完成签到,获得积分10
4秒前
vivien关注了科研通微信公众号
5秒前
冰魂应助KYT_Hu采纳,获得10
5秒前
jianwenhao完成签到,获得积分10
5秒前
身处人海完成签到,获得积分10
5秒前
啊盘发布了新的文献求助10
6秒前
拾一完成签到,获得积分10
6秒前
7秒前
念初完成签到 ,获得积分10
8秒前
传奇3应助学术小垃圾采纳,获得10
8秒前
9秒前
10秒前
老实奇迹发布了新的文献求助10
10秒前
bora发布了新的文献求助10
12秒前
赫连山菡完成签到,获得积分10
12秒前
古月完成签到,获得积分10
12秒前
七熵完成签到 ,获得积分10
14秒前
Haterain发布了新的文献求助10
14秒前
英俊丹寒完成签到,获得积分10
14秒前
科研通AI5应助啊盘采纳,获得10
16秒前
科研力力发布了新的文献求助10
17秒前
17秒前
烟花应助科研小垃圾采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得30
18秒前
Ava应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
19秒前
沧海一兰完成签到,获得积分10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826191
求助须知:如何正确求助?哪些是违规求助? 3368614
关于积分的说明 10451355
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698907
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065