A CONSTRAINED CONSTRUCTIVE OPTIMIZATION MODEL OF BRANCHING ARTERIOLAR NETWORKS IN RAT SKELETAL MUSCLE

骨骼肌 建设性的 计算机科学 血流 适应性 支化(高分子化学) 网络模型 解剖 人工智能 化学 生物 心脏病学 过程(计算) 医学 有机化学 操作系统 生态学
作者
Yuki Bao,Amelia C. Frisbee,Jefferson C. Frisbee,Daniel Goldman
出处
期刊:Journal of Applied Physiology [American Physiological Society]
卷期号:136 (6): 1303-1321
标识
DOI:10.1152/japplphysiol.00896.2023
摘要

Blood flow regulation within the microvasculature reflects a complex interaction of regulatory mechanisms and varies spatially and temporally according to conditions such as metabolism, growth, injury, and disease. Understanding the role of microvascular flow distributions across conditions is of interest to investigators spanning multiple disciplines; however, data collection within networks can be labor-intensive and challenging due to limited resolution. To overcome these experimental challenges, computational network models that can accurately simulate vascular behavior are highly beneficial. Constrained constructive optimization (CCO) is a commonly used algorithm for vascular simulation, particularly well known for its adaptability toward vascular modeling across tissues. The present work demonstrates an implementation of CCO aimed to simulate a branching arteriolar microvasculature in healthy skeletal muscle, validated against literature including comprehensive rat gluteus maximus vasculature datasets, and reviews a list of user-specified adjustable model parameters to understand how their variability affects the simulated networks. Network geometric properties, including mean element diameters, lengths, and numbers of bifurcations per order, Horton's law ratios, and fractal dimension, demonstrate good validation once model parameters are adjusted to experimental data. This model successfully demonstrates hemodynamic properties such as Murray's law and the network Fahraeus effect. Application of centrifugal and Strahler ordering schemes results in divergent descriptions of identical simulated networks. This work introduces a novel CCO-based model focused on generating branching skeletal muscle microvascular arteriolar networks based on adjustable model parameters, thus making it a valuable tool for investigations into skeletal muscle microvascular structure and tissue perfusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俊逸十八完成签到 ,获得积分10
1秒前
lucky完成签到,获得积分10
1秒前
1秒前
地表飞猪发布了新的文献求助10
3秒前
双勾玉发布了新的文献求助10
3秒前
3秒前
坚定惊蛰发布了新的文献求助10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
所所应助子车万仇采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
不安豁发布了新的文献求助10
6秒前
激情的一斩完成签到,获得积分20
6秒前
Ava应助sdl采纳,获得10
8秒前
79发布了新的文献求助10
8秒前
9秒前
1111完成签到 ,获得积分10
10秒前
11秒前
甜甜秋完成签到 ,获得积分10
12秒前
xqq完成签到,获得积分10
12秒前
李健应助激情的一斩采纳,获得10
12秒前
别摆烂了完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
Jasper应助kele采纳,获得10
14秒前
宋佳顺发布了新的文献求助20
14秒前
阿拉蕾发布了新的文献求助10
15秒前
子车万仇发布了新的文献求助10
18秒前
19秒前
无花果应助xiaoxiao采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841