Ultra-short-term multi-energy load forecasting for integrated energy systems based on multi-dimensional coupling characteristic mining and multi-task learning

期限(时间) 联轴节(管道) 能量(信号处理) 任务(项目管理) 计算机科学 数据挖掘 材料科学 工程类 物理 系统工程 机械工程 量子力学
作者
Nantian Huang,Xinran Wang,Hao Wang,Hefei Wang
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:12 被引量:2
标识
DOI:10.3389/fenrg.2024.1373345
摘要

To address the challenges posed by the randomness and volatility of multi-energy loads in integrated energy systems for ultra-short-term accurate load forecasting, this paper proposes an ultra-short-term multi-energy load forecasting method based on multi-dimensional coupling feature mining and multi-task learning. Firstly, a method for mining multi-dimensional coupling characteristics of multi-energy loads is proposed, integrating multiple correlation analysis methods. By constructing coupling features of multi-energy loads and using them as input features of the model, the complex coupling relationships between multi-energy loads are effectively quantified. Secondly, an ultra-short-term multi-energy load forecasting model based on multi-task learning and a temporal convolutional network is constructed. In the prediction model construction phase, the potential complex coupling characteristics between multiple loads can be fully explored, and the potential temporal associations and long-term dependencies within data can be extracted. Then, the multi-task learning loss function weight optimization method based on homoscedastic uncertainty is used to optimize the forecasting model, realizing automatic tuning of the loss function weight parameters and further improving the prediction performance of the model. Finally, an experimental analysis is conducted using the integrated energy system of Arizona State University in the United States as an example. The results show that the proposed forecasting method has higher prediction accuracy than other prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
转圈晕倒完成签到,获得积分10
1秒前
齐耳发布了新的文献求助10
3秒前
3秒前
财来完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
文艺砖家完成签到,获得积分10
8秒前
8秒前
niuma完成签到,获得积分10
9秒前
Owen应助zhangjian19237采纳,获得30
11秒前
snake完成签到 ,获得积分10
12秒前
juju完成签到,获得积分10
12秒前
黎明暂缓发布了新的文献求助10
13秒前
13秒前
Lucas应助Gaojuan采纳,获得10
13秒前
CipherSage应助YKL99采纳,获得10
13秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
Owen应助努力毕业的虎三撇采纳,获得10
15秒前
15秒前
15秒前
蒋钰发布了新的文献求助10
16秒前
weven完成签到 ,获得积分10
17秒前
跑不动的小李完成签到,获得积分10
23秒前
24秒前
希望天下0贩的0应助Sally采纳,获得10
25秒前
深情安青应助独特易形采纳,获得10
26秒前
27秒前
27秒前
lmg发布了新的文献求助30
27秒前
自然夏槐应助tianliyan采纳,获得10
29秒前
尼莫发布了新的文献求助10
29秒前
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818644
求助须知:如何正确求助?哪些是违规求助? 3361692
关于积分的说明 10413776
捐赠科研通 3079904
什么是DOI,文献DOI怎么找? 1693544
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248