Distributed entropy-regularized multi-agent reinforcement learning with policy consensus

强化学习 计算机科学 共识 多智能体系统 人工智能
作者
Yifan Hu,Junjie Fu,Guanghui Wen,Yuezu Lv,Wei Ren
出处
期刊:Automatica [Elsevier BV]
卷期号:164: 111652-111652 被引量:3
标识
DOI:10.1016/j.automatica.2024.111652
摘要

Sample efficiency is a limiting factor for existing distributed multi-agent reinforcement learning (MARL) algorithms over networked multi-agent systems. In this paper, the sample efficiency problem is tackled by formally incorporating the entropy regularization into the distributed MARL algorithm design. Firstly, a new entropy-regularized MARL problem is formulated under the model of networked multi-agent Markov decision processes with observation-based policies and homogeneous agents, where the policy parameter sharing among the agents provably preserves the optimality. Secondly, an on-policy distributed actor–critic algorithm is proposed, where each agent shares its parameters of both the critic and actor for consensus update. Then, the convergence analysis of the proposed algorithm is provided based on the stochastic approximation theory under the assumption of linear function approximation of the critic. Furthermore, a practical off-policy version of the proposed algorithm is developed which possesses scalability, data efficiency and learning stability. Finally, the proposed distributed algorithm is compared against the solid baselines including two classic centralized training algorithms in the multi-agent particle environment, whose learning performance is empirically demonstrated through extensive simulation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助清风细雨采纳,获得10
1秒前
小马甲应助Eason采纳,获得10
1秒前
2秒前
2秒前
XMH发布了新的文献求助10
2秒前
SciGPT应助xiiin采纳,获得10
2秒前
entang完成签到,获得积分10
2秒前
MOF发布了新的文献求助10
4秒前
深深发布了新的文献求助10
4秒前
贾克斯发布了新的文献求助10
4秒前
lll关注了科研通微信公众号
5秒前
今后应助贾克斯采纳,获得10
9秒前
9秒前
小玲子发布了新的文献求助10
11秒前
QAQSS完成签到 ,获得积分10
11秒前
lalala应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
尹梦成应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
xxfsx应助科研通管家采纳,获得10
13秒前
Lindsay举报阳光项链求助涉嫌违规
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
lalala应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408