Drug–Drug Interaction Prediction: Paradigm Shifts, Key Bottlenecks, and Future Directions

计算机科学 生成语法 人工智能 推论 数据科学 领域(数学) 钥匙(锁) 认知科学 机器学习 水准点(测量) 管理科学 一般化 深度学习 范式转换 生成模型 翻译(生物学) 班级(哲学) 构造(python库) 工具箱 复杂系统 图形 人工神经网络
作者
Xiaoqing Ru,Zhen Li,Leyi Wei,Yuanan Liu,Quan Zou
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:15 (6)
标识
DOI:10.1002/wcms.70056
摘要

ABSTRACT Polypharmacy has become a routine practice in modern medicine, yet the risks of drug–drug interactions (DDIs) remain a critical challenge for patient safety. Given the vast number of possible drug combinations and the impracticality of exhaustive clinical testing, computational approaches have become indispensable for DDI prediction. Over the past 15 years, the field has shifted from handcrafted, similarity‐based models to deep learning and graph neural networks (GNNs). Prediction tasks have also expanded from binary classification to multi‐class, multi‐label, cold‐start, and higher‐order settings. These reflect an emerging paradigm in both methodology and scope. Yet critical bottlenecks remain. Data sparsity, unreliable negatives, class imbalance, and source heterogeneity undermine robustness; models still struggle with generalization to unseen drugs, with mechanistic interpretability, and with capturing asymmetric or higher‐order interactions. These limitations continue to impede translation into clinical and regulatory practice. In this Advanced Review, we critically assess methodological evolution, benchmark datasets, and emerging paradigms, including GNNs, large language models (including multimodal extensions), and generative AI, and examine their promises and limitations. We argue that next‐generation progress hinges on unified multimodal and mechanism‐aware frameworks, strategies for robust learning under cold‐start and long‐tail scenarios, and the integration of causal inference with generative approaches to enhance interpretability. By synthesizing past advances with forward‐looking perspectives, this review outlines strategic pathways for accelerating the transition of DDI prediction toward intelligent, interpretable, and clinically actionable solutions. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Chemoinformatics Molecular and Statistical Mechanics > Molecular Interactions

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
高兴白莲完成签到,获得积分10
刚刚
喽喽发布了新的文献求助30
1秒前
醉熏的幻莲关注了科研通微信公众号
2秒前
好好好发布了新的文献求助10
4秒前
4秒前
Zy发布了新的文献求助10
4秒前
shine发布了新的文献求助10
6秒前
SIA_TERS发布了新的文献求助10
7秒前
光亮的秋白完成签到 ,获得积分10
8秒前
共享精神应助丰富的墨镜采纳,获得10
8秒前
9秒前
10秒前
11秒前
科研通AI2S应助net80yhm采纳,获得10
13秒前
牛马鹅发布了新的文献求助10
14秒前
琳666完成签到,获得积分10
14秒前
科研dog完成签到,获得积分10
15秒前
杨裕农发布了新的文献求助10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
一壶古酒应助科研通管家采纳,获得100
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
HANGOVERG应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得30
18秒前
烤冷面应助科研通管家采纳,获得10
18秒前
HANGOVERG应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
ho应助科研通管家采纳,获得10
18秒前
18秒前
zmy发布了新的文献求助10
18秒前
18秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164