材料科学
电化学
电解质
阴极
钠
枝晶(数学)
纳米技术
电化学窗口
储能
金属
离子电导率
化学工程
涂层
电导率
离子键合
快离子导体
耐久性
锂(药物)
电极
电子传输链
无机化学
钠离子电池
电化学电池
电化学电位
数码产品
纳米颗粒
降级(电信)
电镀(地质)
作者
Dongxu Zhou,Taiguang Li,Butian Chen,X. Y. Li,Ruoyu Wang,Qianjiang Mao,Wen Yin,Limei Sun,Xiangfeng Liu
标识
DOI:10.1002/adfm.202529606
摘要
ABSTRACT Solid‐state sodium metal batteries offer substantial advantages in resource sustainability and cost effectiveness bsesides safety, making them promising candidates for next‐generation energy storage technologies. However, the intrinsic electronic conductivity of Na 3 Zr 2 Si 2 PO 12 (NZSP) electrolyte facilitates Na‐ion reduction within the electrolyte, resulting in Na dendrite formation. Conventional interface modifications inadequately suppress the interfacial electron transport, further accelerating the dendrite growth and largely compromising electrochemical stability. This work effectively suppresses sodium dendrite growth by constructing a biphasic electronically locked chain. Na 3 AlF 6 incorporation into NZSP at the bulk level enhances the ionic conductivity while suppressing the electronic conductivity. At the interface level, SnBr 2 coating reacts with metallic Na to in situ form NaBr, creating an effective electron‐blocking barrier. This integrated approach enables the symmetric cells to achieve exceptional cycling durability (9000 h at 0.2 mA cm −2 ). Full cells assembled with Na 3 V 2 (PO 4 ) 3 cathodes demonstrate superior electrochemical performance (92.26%@2000 cycles at 1C and 90.01%@1000 cycles at 2C). This strategy of bulk‐interface electron suppression addresses fundamental challenges in solid‐state sodium batteries, providing a practical pathway toward developing long‐life solid state sodium metal batteries with enhanced safety features.
科研通智能强力驱动
Strongly Powered by AbleSci AI