亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early prediction of thyroid capsule invasion in papillary microcarcinoma using ultrasound-based deep learning models: a retrospective multicenter study

作者
Lin Sui,Bojian Feng,Xiayi Chen,Zhiyan JIN,Xin‐Ying Zhu,Tian JIANG,Yuqi Yan,Yahan Zhou,Chen Chen,Jincao Yao,Min Lai,Lujiao Lv,Yifan Wang,Liping Wang,Cong Li,Li-na Feng,Wenwen Yue,Daizhang Yu,Kaiyuan Shi,Vicky Yang Wang
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1186/s13244-025-02132-0
摘要

Abstract Objective Thyroid capsule invasion (TCI) predicts early progression in papillary thyroid microcarcinoma (PTMC). This study aimed to develop an integrated model that combines handcrafted peri-tumoral radiomics features with deep learning (DL)-derived intra-tumoral features for accurate early prediction of TCI, to support clinical decision-making. Materials and methods Retrospective data from 964 patients with 964 pathologically confirmed PTMC lesions across three centers were collected. Radiomics features were extracted from multiple peri-tumoral regions, and the optimal peri-tumor region with the best radiomics features was selected using a support vector machine (SVM). The selected radiomics features were then combined with intra-tumoral DL features extracted from the tumors before being fed into four different DL models for training and validation. Performance was validated on the internal ( n = 177) and external ( n = 84) test sets. Six radiologists (senior/attending/junior) assessed TCI with/without DL assistance. Results The radiomics features, which achieved the best diagnostic performance with an AUC of 0.795 using SVM, were extracted from the peri-tumor region with 30% expansion from the original tumor. By further combining these radiomics features with intra-tumoral DL features, four different DL models were established to identify TCI in PTMC. Swin-Transformer achieved superior performance (internal AUC: 0.923; external AUC: 0.892). With DL model assistance, the AUCs of six radiologists significantly improved, for example, from 0.720 to 0.796 and from 0.725 to 0.790 for senior radiologists, and similar gains were observed for attending and junior radiologists. Conclusions As an effective clinical assistive tool, this integrated model can provide TCI identification with high level of accuracy. With its ability to enhance radiologists’ diagnostic performance, it supports early PTMC risk stratification and personalized intervention. Critical relevance statement This retrospective multicenter study establishes an integrated model for identifying TCI in PTMC. The model significantly enhances radiologists’ diagnostic precision across multiple experience levels, supporting early clinical decision-making for optimized intervention strategies. Key Points Accurate prediction of TCI facilitates early assessment of PTMC progression and guides subsequent individualized clinical management. DL significantly improves the predictive performance for TCI. DL effectively assists radiologists in TCI diagnosis. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
11秒前
王王碎冰冰应助徐对话采纳,获得30
35秒前
46秒前
烟花应助危机的尔琴采纳,获得10
52秒前
1分钟前
危机的尔琴完成签到,获得积分10
1分钟前
Leee完成签到,获得积分20
1分钟前
1分钟前
1分钟前
Leee发布了新的文献求助10
1分钟前
1分钟前
1分钟前
icoo发布了新的文献求助10
1分钟前
小g完成签到,获得积分10
1分钟前
小白完成签到 ,获得积分10
1分钟前
浮游应助Wei采纳,获得10
1分钟前
高大的清涟完成签到 ,获得积分10
1分钟前
003完成签到,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
charih完成签到 ,获得积分10
2分钟前
行走完成签到,获得积分10
2分钟前
001完成签到,获得积分0
2分钟前
lemon发布了新的文献求助10
2分钟前
002完成签到,获得积分0
2分钟前
矜持完成签到 ,获得积分10
2分钟前
我是老大应助icoo采纳,获得10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
寮信完成签到 ,获得积分10
2分钟前
2分钟前
icoo发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
CodeCraft应助icoo采纳,获得10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
AneyWinter66应助七大洋的风采纳,获得10
3分钟前
3分钟前
12A发布了新的文献求助10
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
3分钟前
李健应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628282
求助须知:如何正确求助?哪些是违规求助? 4716386
关于积分的说明 14963951
捐赠科研通 4785999
什么是DOI,文献DOI怎么找? 2555502
邀请新用户注册赠送积分活动 1516781
关于科研通互助平台的介绍 1477332