Urban flow prediction with spatial–temporal neural ODEs

计算机科学 灵活性(工程) 深度学习 人工神经网络 人工智能 卷积神经网络 流量(计算机网络) 数据挖掘 机器学习 颂歌 钥匙(锁) 数学 计算机安全 统计 文学类 艺术
作者
Fan Zhou,Liang Li,Kunpeng Zhang,Goce Trajcevski
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:124: 102912-102912 被引量:34
标识
DOI:10.1016/j.trc.2020.102912
摘要

With the recent advances in deep learning, data-driven methods have shown compelling performance in various application domains enabling the Smart Cities paradigm. Leveraging spatial–temporal data from multiple sources for (citywide) traffic forecasting is a key to strengthen the smart city management in areas such as urban traffic control, abnormal event detection, etc. Existing approaches of traffic flow prediction mainly rely on the development of various deep neural networks –e.g., Convolutional Neural Networks such as ResNet are used for modeling spatial dependencies among different regions, whereas recurrent neural networks are increasingly implemented for temporal dynamics modeling. Despite their advantages, the existing approaches suffer from limitations of intensive computations, lack of capabilities to properly deal with missing values, and simplistic integration of heterogeneous data. In this paper, we propose a novel urban flow prediction framework by generalizing the hidden states of the model with continuous-time dynamics of the latent states using neural ordinary differential equations (ODE). Specifically, we introduce a discretize-then-optimize approach to improve and balance the prediction accuracy and computational efficiency. It not only guarantees the prediction error but also provides high flexibility for decision-makers. Furthermore, we investigate the factors, both intrinsic and extrinsic, that affect the city traffic volume and use separate neural networks to extract and disentangle the influencing factors, which avoids the brute-force data fusion in previous works. Extensive experiments conducted on the real-world large-scale datasets demonstrate that our method outperforms the state-of-the-art baselines, while requiring significantly less memory cost and fewer model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助完美梨愁采纳,获得10
1秒前
顺心毛巾完成签到,获得积分10
1秒前
熙梓日记发布了新的文献求助10
1秒前
酷波er应助iii采纳,获得10
2秒前
大模型应助淡淡的秋寒采纳,获得10
2秒前
2秒前
悠悠完成签到,获得积分10
3秒前
JerryZ发布了新的文献求助10
4秒前
YG发布了新的文献求助10
4秒前
xiaoloong完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
热心市民小红花应助louyu采纳,获得10
6秒前
6秒前
陈一口完成签到 ,获得积分10
6秒前
赘婿应助想飞的猪采纳,获得10
7秒前
tqmx完成签到,获得积分10
8秒前
CipherSage应助俏皮的孤丹采纳,获得30
8秒前
星星星发布了新的文献求助10
8秒前
8秒前
丰知然应助Noob_saibot采纳,获得10
9秒前
9秒前
Frank完成签到,获得积分10
9秒前
KKLUV完成签到,获得积分10
9秒前
领导范儿应助酷炫的靖仇采纳,获得10
10秒前
13633501455发布了新的文献求助10
10秒前
友好绿柏完成签到,获得积分10
10秒前
11秒前
11秒前
YG完成签到,获得积分20
11秒前
科研通AI2S应助Lee采纳,获得10
11秒前
乐天完成签到,获得积分10
11秒前
研友_LMg7PZ完成签到,获得积分10
12秒前
12秒前
12秒前
香xiang发布了新的文献求助10
12秒前
俏皮碧玉完成签到,获得积分10
12秒前
阿胡完成签到 ,获得积分10
12秒前
ohwhale完成签到 ,获得积分10
13秒前
科研通AI5应助JerryZ采纳,获得10
13秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3873461
求助须知:如何正确求助?哪些是违规求助? 3415791
关于积分的说明 10695784
捐赠科研通 3140027
什么是DOI,文献DOI怎么找? 1732506
邀请新用户注册赠送积分活动 835423
科研通“疑难数据库(出版商)”最低求助积分说明 781968