物理
光子
准粒子
声子
等离子体子
光子学
凝聚态物理
量子力学
超导电性
作者
Nicholas Rivera,Ido Kaminer
标识
DOI:10.1038/s42254-020-0224-2
摘要
Interactions between light and matter play an instrumental role in spectroscopy, sensing, quantum information processing and lasers. In most of these applications, light is considered in terms of electromagnetic plane waves propagating at the speed of light in vacuum. As a result, light–matter interactions can usually be treated as very weak and captured at the lowest order in quantum electrodynamics. However, progress in understanding the coupling of photons to material quasiparticles (plasmons, phonons and excitons) brings the need for a generalized view of the photon at the core of every light–matter interaction. In this new picture, the photon can have greatly different polarization and dispersion and be confined to the scale of a few nanometres. Such photonic quasiparticles enable a wealth of otherwise unobservable light–matter interaction phenomena, in interactions with both bound and free electrons. This Review focuses on the theoretical and experimental developments in realizing new light–matter interactions with photonic quasiparticles. Examples include room-temperature strong coupling, ultrafast ‘forbidden’ transitions in atoms and new applications of the Cherenkov effect, as well as breakthroughs in ultrafast electron microscopy and new concepts for compact X-ray sources. The coupling of photons to material quasiparticles such as plasmons, phonons and excitons opens new possibilities in light–matter interactions. This Review presents a generalized view of such quasiparticles and the technique that describes their interactions with matter: macroscopic quantum electrodynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI