Structure and Illumination Constrained GAN for Medical Image Enhancement

人工智能 计算机科学 计算机视觉 医学影像学 图像增强 图像(数学)
作者
Yuhui Ma,Jiang Liu,Yonghuai Liu,Huazhu Fu,Yan Hu,Jun Cheng,Hong Qi,Yufei Wu,Jiong Zhang,Yitian Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3955-3967 被引量:142
标识
DOI:10.1109/tmi.2021.3101937
摘要

The development of medical imaging techniques has greatly supported clinical decision making. However, poor imaging quality, such as non-uniform illumination or imbalanced intensity, brings challenges for automated screening, analysis and diagnosis of diseases. Previously, bi-directional GANs (e.g., CycleGAN), have been proposed to improve the quality of input images without the requirement of paired images. However, these methods focus on global appearance, without imposing constraints on structure or illumination, which are essential features for medical image interpretation. In this paper, we propose a novel and versatile bi-directional GAN, named Structure and illumination constrained GAN (StillGAN), for medical image quality enhancement. Our StillGAN treats low- and high-quality images as two distinct domains, and introduces local structure and illumination constraints for learning both overall characteristics and local details. Extensive experiments on three medical image datasets (e.g., corneal confocal microscopy, retinal color fundus and endoscopy images) demonstrate that our method performs better than both conventional methods and other deep learning-based methods. In addition, we have investigated the impact of the proposed method on different medical image analysis and clinical tasks such as nerve segmentation, tortuosity grading, fovea localization and disease classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
傲娇时光完成签到,获得积分10
刚刚
隐形曼青应助英勇半双采纳,获得10
刚刚
Homura完成签到,获得积分10
刚刚
Hot完成签到,获得积分10
1秒前
菜菜就爱玩完成签到,获得积分10
1秒前
1秒前
Eli完成签到,获得积分10
1秒前
欣喜谷槐完成签到,获得积分10
1秒前
Majoe完成签到,获得积分10
1秒前
高冰冰完成签到 ,获得积分10
1秒前
1秒前
sennialiu完成签到,获得积分10
1秒前
zhangzhe发布了新的文献求助10
2秒前
2秒前
单纯半山完成签到,获得积分10
2秒前
EnguangChen完成签到,获得积分10
2秒前
2秒前
sxr完成签到,获得积分10
3秒前
上官若男应助薇笑不慌采纳,获得10
3秒前
4秒前
long发布了新的文献求助10
4秒前
爱吃蔬菜完成签到,获得积分10
4秒前
迅速靖仇完成签到,获得积分10
4秒前
乌特拉完成签到 ,获得积分10
4秒前
4秒前
MOMO100完成签到,获得积分10
4秒前
积极剑通发布了新的文献求助30
4秒前
JamesPei应助zjcbk985采纳,获得10
4秒前
shbkmy完成签到,获得积分10
4秒前
MZX完成签到 ,获得积分10
5秒前
传奇3应助锂离子采纳,获得10
5秒前
激昂的千秋完成签到,获得积分10
5秒前
wuxiurong完成签到,获得积分10
5秒前
小火孩完成签到,获得积分10
5秒前
蓝梦一刀完成签到,获得积分10
5秒前
6秒前
小叶发布了新的文献求助10
6秒前
小叶发布了新的文献求助10
6秒前
太阳博士完成签到,获得积分10
6秒前
6秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503863
求助须知:如何正确求助?哪些是违规求助? 4599332
关于积分的说明 14468093
捐赠科研通 4533261
什么是DOI,文献DOI怎么找? 2484291
邀请新用户注册赠送积分活动 1467531
关于科研通互助平台的介绍 1440323