Structure and Illumination Constrained GAN for Medical Image Enhancement

人工智能 计算机科学 计算机视觉 医学影像学 图像增强 图像(数学)
作者
Yuhui Ma,Jiang Liu,Yonghuai Liu,Huazhu Fu,Yan Hu,Jun Cheng,Hong Qi,Yufei Wu,Jiong Zhang,Yitian Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3955-3967 被引量:128
标识
DOI:10.1109/tmi.2021.3101937
摘要

The development of medical imaging techniques has greatly supported clinical decision making. However, poor imaging quality, such as non-uniform illumination or imbalanced intensity, brings challenges for automated screening, analysis and diagnosis of diseases. Previously, bi-directional GANs (e.g., CycleGAN), have been proposed to improve the quality of input images without the requirement of paired images. However, these methods focus on global appearance, without imposing constraints on structure or illumination, which are essential features for medical image interpretation. In this paper, we propose a novel and versatile bi-directional GAN, named Structure and illumination constrained GAN (StillGAN), for medical image quality enhancement. Our StillGAN treats low- and high-quality images as two distinct domains, and introduces local structure and illumination constraints for learning both overall characteristics and local details. Extensive experiments on three medical image datasets (e.g., corneal confocal microscopy, retinal color fundus and endoscopy images) demonstrate that our method performs better than both conventional methods and other deep learning-based methods. In addition, we have investigated the impact of the proposed method on different medical image analysis and clinical tasks such as nerve segmentation, tortuosity grading, fovea localization and disease classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ling发布了新的文献求助10
1秒前
GGb发布了新的文献求助10
2秒前
云城完成签到 ,获得积分10
2秒前
3秒前
liangkai完成签到,获得积分10
5秒前
小蘑菇应助zhouenen采纳,获得10
5秒前
6秒前
科研通AI5应助Ming采纳,获得10
9秒前
10秒前
blueweier完成签到 ,获得积分10
11秒前
小卫卫发布了新的文献求助10
13秒前
13秒前
方法法国衣服头发完成签到,获得积分10
13秒前
15秒前
可靠蜗牛完成签到,获得积分10
20秒前
长苼完成签到,获得积分10
20秒前
儒雅涵易完成签到 ,获得积分10
24秒前
百灵鸟完成签到,获得积分10
26秒前
27秒前
敏感的芷珊完成签到,获得积分10
27秒前
28秒前
30秒前
31秒前
桃博完成签到,获得积分10
31秒前
小唐发布了新的文献求助10
32秒前
xingxinghan发布了新的文献求助10
32秒前
可爱的函函应助Lx030324采纳,获得10
32秒前
xiaohu6311完成签到,获得积分10
33秒前
小卫卫完成签到,获得积分10
35秒前
解泽星发布了新的文献求助10
35秒前
xiaohu6311发布了新的文献求助10
36秒前
阿言完成签到 ,获得积分10
37秒前
云城发布了新的文献求助100
37秒前
解泽星完成签到,获得积分10
40秒前
Skyblue666完成签到 ,获得积分10
41秒前
www完成签到,获得积分10
42秒前
42秒前
43秒前
小唐完成签到,获得积分10
44秒前
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129400
求助须知:如何正确求助?哪些是违规求助? 3666443
关于积分的说明 11599634
捐赠科研通 3365051
什么是DOI,文献DOI怎么找? 1849020
邀请新用户注册赠送积分活动 912822
科研通“疑难数据库(出版商)”最低求助积分说明 828259