Decoupling the Voltage Hysteresis of Li‐Rich Cathodes: Electrochemical Monitoring, Modulation Anionic Redox Chemistry and Theoretical Verifying

解耦(概率) 氧化还原 电化学 材料科学 阴极 磁滞 锂(药物) 化学物理 动力学 化学工程 无机化学 纳米技术 电极 物理化学 化学 物理 量子力学 控制工程 内分泌学 工程类 医学
作者
Gang Sun,Fu‐Da Yu,Changtai Zhao,Ruizhi Yu,Samuel Farnum,Guangjie Shao,Xueliang Sun,Zhen‐Bo Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:31 (1) 被引量:86
标识
DOI:10.1002/adfm.202002643
摘要

Abstract Cathodes in lithium‐ion batteries with anionic redox can deliver extraordinarily high specific capacities but also present many issues such as oxygen release, voltage hysteresis, and sluggish kinetics. Identifying problems and developing solutions for these materials are vital for creating high‐energy lithium‐ion batteries. Herein, the electrochemical and structural monitoring is conducted on lithium‐rich cathodes to directly probe the formation processes of larger voltage hysteresis. These results indicate that the charge‐compensation properties, structural evolution, and transition metal (TM) ions migration vary from oxidation to reduction process. This leads to huge differences in charge and discharge voltage profile. Meanwhile, the anionic redox processes display a slow kinetics process with large hysteresis (≈0.5 V), compared to fast cationic redox processes without any hysteresis. More importantly, a simple yet effective strategy has been proposed where fine‐modulating local oxygen environment by the lithium/oxygen (Li/O) ratio tunes the anionic redox chemistry. This effectively improves its electrochemical properties, including the operating voltage and kinetics. This is also verified by theoretical calculations that adjusting anionic redox chemistry by the Li/O ratio shifts the TM 3d—O 2p bands and the non‐bonding O 2p band to a lower energy level, resulting in a higher redox reaction potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彩虹猫完成签到 ,获得积分10
3秒前
maolingyu完成签到,获得积分10
8秒前
闪闪的向梦完成签到,获得积分10
8秒前
丹丹子完成签到 ,获得积分10
11秒前
cdercder应助复杂的溪流采纳,获得10
15秒前
希望天下0贩的0应助lilac采纳,获得10
16秒前
笑点低不言完成签到,获得积分10
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
阿飘应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
阿飘应助科研通管家采纳,获得10
20秒前
和谐诗双完成签到 ,获得积分10
20秒前
ding应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
iNk应助科研通管家采纳,获得10
20秒前
20秒前
阿飘应助科研通管家采纳,获得10
20秒前
20秒前
ding应助科研通管家采纳,获得10
20秒前
21秒前
脑洞疼应助zrs采纳,获得10
21秒前
22秒前
田様应助雨前知了采纳,获得10
24秒前
FOREST完成签到,获得积分10
24秒前
吱吱熊sama完成签到,获得积分10
25秒前
Airy完成签到,获得积分10
27秒前
lilac发布了新的文献求助10
27秒前
合适怜南完成签到,获得积分10
27秒前
29秒前
29秒前
30秒前
精英刺客完成签到 ,获得积分10
32秒前
遇见完成签到 ,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315