Machine Learning for Surgical Phase Recognition: A Systematic Review.

深度学习 梅德林 学习曲线
作者
Carly R. Garrow,Karl-Friedrich Kowalewski,Linhong Li,Martin Wagner,Mona W. Schmidt,Sandy Engelhardt,Daniel A. Hashimoto,Hannes Kenngott,Sebastian Bodenstedt,Stefanie Speidel,Beat P. Müller-Stich,Felix Nickel
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:273 (4): 684-693 被引量:16
标识
DOI:10.1097/sla.0000000000004425
摘要

Objective To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation of phase recognition based on data inputs is essential for optimization of workflow, surgical training, intraoperative assistance, patient safety, and efficiency. Methods A systematic review was performed according to the Cochrane recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Web of Science, IEEExplore, GoogleScholar, and CiteSeerX were searched. Literature describing phase recognition based on ML models and the capture of intraoperative signals during general surgery procedures was included. Results A total of 2254 titles/abstracts were screened, and 35 full-texts were included. Most commonly used ML models were Hidden Markov Models and Artificial Neural Networks with a trend towards higher complexity over time. Most frequently used data types were feature learning from surgical videos and manual annotation of instrument use. Laparoscopic cholecystectomy was used most commonly, often achieving accuracy rates over 90%, though there was no consistent standardization of defined phases. Conclusions ML for surgical phase recognition can be performed with high accuracy, depending on the model, data type, and complexity of surgery. Different intraoperative data inputs such as video and instrument type can successfully be used. Most ML models still require significant amounts of manual expert annotations for training. The ML models may drive surgical workflow towards standardization, efficiency, and objectiveness to improve patient outcome in the future. Registration prospero CRD42018108907.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助Yanfei采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
失眠醉易应助科研通管家采纳,获得20
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Cling发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
3秒前
失眠醉易应助科研通管家采纳,获得20
3秒前
开放鸿涛应助科研通管家采纳,获得10
3秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
zh应助科研通管家采纳,获得30
3秒前
哭泣灯泡应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
隐形曼青应助fujun采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
菠萝炒饭应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
ijoy应助科研通管家采纳,获得10
4秒前
菠萝炒饭应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
香蕉觅云应助冷酷的风华采纳,获得10
7秒前
zhuxd发布了新的文献求助10
7秒前
糊涂涂完成签到,获得积分10
8秒前
9秒前
所所应助wjr采纳,获得10
11秒前
11秒前
圆圆完成签到,获得积分10
12秒前
13秒前
13秒前
有机发布了新的文献求助10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801800
求助须知:如何正确求助?哪些是违规求助? 3347588
关于积分的说明 10334363
捐赠科研通 3063747
什么是DOI,文献DOI怎么找? 1682067
邀请新用户注册赠送积分活动 807893
科研通“疑难数据库(出版商)”最低求助积分说明 763960