Machine Learning for Surgical Phase Recognition

医学 标准化 工作流程 人工智能 机器学习 计算机科学 数据库 操作系统
作者
Carly R. Garrow,Karl‐Friedrich Kowalewski,Linhong Li,Martin Wagner,Mona Wanda Schmidt,Sandy Engelhardt,Daniel A. Hashimoto,Hannes Kenngott,Sebastian Bodenstedt,Stefanie Speidel,Beat P. Müller‐Stich,Felix Nickel
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:273 (4): 684-693 被引量:244
标识
DOI:10.1097/sla.0000000000004425
摘要

Objective: To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background: Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation of phase recognition based on data inputs is essential for optimization of workflow, surgical training, intraoperative assistance, patient safety, and efficiency. Methods: A systematic review was performed according to the Cochrane recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Web of Science, IEEExplore, GoogleScholar, and CiteSeerX were searched. Literature describing phase recognition based on ML models and the capture of intraoperative signals during general surgery procedures was included. Results: A total of 2254 titles/abstracts were screened, and 35 full-texts were included. Most commonly used ML models were Hidden Markov Models and Artificial Neural Networks with a trend towards higher complexity over time. Most frequently used data types were feature learning from surgical videos and manual annotation of instrument use. Laparoscopic cholecystectomy was used most commonly, often achieving accuracy rates over 90%, though there was no consistent standardization of defined phases. Conclusions: ML for surgical phase recognition can be performed with high accuracy, depending on the model, data type, and complexity of surgery. Different intraoperative data inputs such as video and instrument type can successfully be used. Most ML models still require significant amounts of manual expert annotations for training. The ML models may drive surgical workflow towards standardization, efficiency, and objectiveness to improve patient outcome in the future. Registration PROSPERO: CRD42018108907
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助均儒采纳,获得10
刚刚
1秒前
2秒前
大个应助悲凉的小馒头采纳,获得10
2秒前
树叶关注了科研通微信公众号
4秒前
林木发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
英姑应助聪慧的凝海采纳,获得10
6秒前
ZGY完成签到,获得积分10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得30
7秒前
Hello应助科研通管家采纳,获得10
7秒前
风中冰香应助科研通管家采纳,获得10
8秒前
FashionBoy应助ALOHA采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
安安完成签到,获得积分10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
Anima应助科研通管家采纳,获得10
8秒前
8秒前
今后应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
脑洞疼应助黄同学采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
xxfsx应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
CodeCraft应助橘子阳光采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307051
求助须知:如何正确求助?哪些是违规求助? 4452740
关于积分的说明 13855150
捐赠科研通 4340324
什么是DOI,文献DOI怎么找? 2383115
邀请新用户注册赠送积分活动 1377917
关于科研通互助平台的介绍 1345800