清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer

计算机科学 成像体模 带宽(计算) 图像质量 迭代重建 人工智能 计算机视觉 卷积神经网络 传感器 声学 图像(数学) 医学 放射科 电信 物理
作者
Tri Vu,Mucong Li,Hannah Humayun,Yuan Zhou,Junjie Yao
出处
期刊:Experimental Biology and Medicine [SAGE Publishing]
卷期号:245 (7): 597-605 被引量:100
标识
DOI:10.1177/1535370220914285
摘要

With balanced spatial resolution, penetration depth, and imaging speed, photoacoustic computed tomography (PACT) is promising for clinical translation such as in breast cancer screening, functional brain imaging, and surgical guidance. Typically using a linear ultrasound (US) transducer array, PACT has great flexibility for hand-held applications. However, the linear US transducer array has a limited detection angle range and frequency bandwidth, resulting in limited-view and limited-bandwidth artifacts in the reconstructed PACT images. These artifacts significantly reduce the imaging quality. To address these issues, existing solutions often have to pay the price of system complexity, cost, and/or imaging speed. Here, we propose a deep-learning-based method that explores the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to reduce the limited-view and limited-bandwidth artifacts in PACT. Compared with existing reconstruction and convolutional neural network approach, our model has shown improvement in imaging quality and resolution. Our results on simulation, phantom, and in vivo data have collectively demonstrated the feasibility of applying WGAN-GP to improve PACT’s image quality without any modification to the current imaging set-up. Impact statement This study has the following main impacts. It offers a promising solution for removing limited-view and limited-bandwidth artifact in PACT using a linear-array transducer and conventional image reconstruction, which have long hindered its clinical translation. Our solution shows unprecedented artifact removal ability for in vivo image, which may enable important applications such as imaging tumor angiogenesis and hypoxia. The study reports, for the first time, the use of an advanced deep-learning model based on stabilized generative adversarial network. Our results have demonstrated its superiority over other state-of-the-art deep-learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝麻汤圆完成签到,获得积分10
1秒前
自然之水完成签到,获得积分10
7秒前
LaTeXer应助fdj3121采纳,获得30
11秒前
maodeshu完成签到,获得积分10
38秒前
fdj3121完成签到,获得积分10
40秒前
赘婿应助maodeshu采纳,获得10
42秒前
earthai完成签到,获得积分10
42秒前
俭朴蜜蜂完成签到 ,获得积分10
48秒前
49秒前
1分钟前
zhubin完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
juan完成签到 ,获得积分10
2分钟前
2分钟前
maodeshu发布了新的文献求助10
2分钟前
xiaxiao完成签到,获得积分0
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得20
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
huangzsdy完成签到,获得积分10
3分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
稻子完成签到 ,获得积分10
4分钟前
4分钟前
柔弱友菱发布了新的文献求助10
4分钟前
子郁完成签到 ,获得积分10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得20
5分钟前
5分钟前
marco发布了新的文献求助10
5分钟前
6分钟前
Jasper应助marco采纳,获得10
6分钟前
6分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360201
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058