Improved protein structure prediction using potentials from deep learning

计算机科学 蛋白质结构预测 梯度下降 蛋白质结构 构造(python库) 人工神经网络 人工智能 简单(哲学) 算法 机器学习 蛋白质超家族 功能(生物学) 计算生物学 生物系统 卡斯普 数据挖掘 生物 遗传学 认识论 基因 哲学 程序设计语言 生物化学
作者
Andrew Senior,K Taki,John Jumper,James Kirkpatrick,Laurent Sifre,Tim Green,Chongli Qin,Augustin Žídek,Alexander Nelson,Alex Bridgland,Hugo Penedones,Stig Petersen,Karen Simonyan,Steve Crossan,Pushmeet Kohli,David T. Jones,David Silver,Koray Kavukcuoglu,Demis Hassabis
出处
期刊:Nature [Springer Nature]
卷期号:577 (7792): 706-710 被引量:3350
标识
DOI:10.1038/s41586-019-1923-7
摘要

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. AlphaFold predicts the distances between pairs of residues, is used to construct potentials of mean force that accurately describe the shape of a protein and can be optimized with gradient descent to predict protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄的魔镜完成签到 ,获得积分10
3秒前
yanmh完成签到,获得积分10
5秒前
7秒前
Cold-Drink-Shop完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
16秒前
Samuel98完成签到 ,获得积分10
22秒前
石慧君完成签到 ,获得积分10
26秒前
Iris完成签到 ,获得积分10
26秒前
27秒前
个性的抽象完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
31秒前
走啊走应助科研通管家采纳,获得30
31秒前
31秒前
走啊走应助科研通管家采纳,获得30
31秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
31秒前
走啊走应助科研通管家采纳,获得30
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
轻松的越彬完成签到 ,获得积分10
36秒前
孙靖博完成签到,获得积分10
37秒前
38秒前
anthea完成签到 ,获得积分10
40秒前
kusicfack完成签到,获得积分10
40秒前
陌上之心完成签到 ,获得积分10
40秒前
41秒前
轨迹应助Jiangsh采纳,获得20
41秒前
Xuz完成签到 ,获得积分10
41秒前
dmr完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
47秒前
LZC完成签到 ,获得积分10
49秒前
huntime08完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5756033
求助须知:如何正确求助?哪些是违规求助? 5501691
关于积分的说明 15382007
捐赠科研通 4893822
什么是DOI,文献DOI怎么找? 2632432
邀请新用户注册赠送积分活动 1580300
关于科研通互助平台的介绍 1536157