Improved protein structure prediction using potentials from deep learning

计算机科学 蛋白质结构预测 梯度下降 蛋白质结构 构造(python库) 人工神经网络 人工智能 简单(哲学) 算法 机器学习 蛋白质超家族 功能(生物学) 计算生物学 生物系统 卡斯普 数据挖掘 生物 遗传学 认识论 基因 哲学 程序设计语言 生物化学
作者
Andrew Senior,K Taki,John Jumper,James Kirkpatrick,Laurent Sifre,Tim Green,Chongli Qin,Augustin Žídek,Alexander Nelson,Alex Bridgland,Hugo Penedones,Stig Petersen,Karen Simonyan,Steve Crossan,Pushmeet Kohli,David T. Jones,David Silver,Koray Kavukcuoglu,Demis Hassabis
出处
期刊:Nature [Nature Portfolio]
卷期号:577 (7792): 706-710 被引量:3090
标识
DOI:10.1038/s41586-019-1923-7
摘要

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. AlphaFold predicts the distances between pairs of residues, is used to construct potentials of mean force that accurately describe the shape of a protein and can be optimized with gradient descent to predict protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西安浴日光能赵炜完成签到,获得积分10
刚刚
LAMAMAX完成签到,获得积分10
1秒前
科研通AI2S应助SWJ采纳,获得10
1秒前
有一个盆完成签到,获得积分10
2秒前
liulei完成签到 ,获得积分10
2秒前
JamesPei应助动听的夏真采纳,获得10
3秒前
wbhou完成签到 ,获得积分10
3秒前
allia完成签到 ,获得积分10
4秒前
wshwx完成签到,获得积分10
4秒前
大胆的迎梅完成签到 ,获得积分10
4秒前
5秒前
666完成签到,获得积分10
8秒前
9秒前
m李完成签到 ,获得积分10
10秒前
伶俐向薇完成签到,获得积分10
10秒前
兴奋的豆腐乳完成签到,获得积分20
10秒前
belove发布了新的文献求助10
11秒前
记钙记钙完成签到 ,获得积分10
13秒前
Cu完成签到 ,获得积分10
14秒前
Pure完成签到 ,获得积分10
15秒前
王伊辰完成签到,获得积分10
15秒前
英勇如霜完成签到,获得积分10
17秒前
joyceee完成签到,获得积分20
18秒前
可爱安筠完成签到,获得积分10
19秒前
20秒前
123455完成签到,获得积分10
22秒前
文献啊文献完成签到,获得积分10
22秒前
希望天下0贩的0应助ZN采纳,获得10
22秒前
闪闪奇妙完成签到,获得积分20
22秒前
陈皮软糖完成签到 ,获得积分10
24秒前
sure完成签到 ,获得积分10
25秒前
25秒前
Flori完成签到 ,获得积分10
26秒前
Pure发布了新的文献求助10
26秒前
27秒前
SciGPT应助猫猫逃离二次元采纳,获得10
28秒前
张小闲完成签到 ,获得积分10
30秒前
尹冰露发布了新的文献求助10
30秒前
不要再忘登陆密码了完成签到,获得积分0
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807486
求助须知:如何正确求助?哪些是违规求助? 4122253
关于积分的说明 12753923
捐赠科研通 3857218
什么是DOI,文献DOI怎么找? 2123498
邀请新用户注册赠送积分活动 1145608
关于科研通互助平台的介绍 1038221